348
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of two decoupled time-stepping finite-element methods for incompressible fluids with microstructure

&
Pages 686-709 | Received 17 Apr 2016, Accepted 18 Jan 2017, Published online: 06 Mar 2017

References

  • M. Akbas, S. Kaya, M. Mohebujjaman and L. Rebholz, Numerical analysis and testing of a full discrete, decoupled penalty-projection algorithm for MHD in elsa¨sser variable, Int. J. Numer. Anal. Mod. 13(1) (2016), pp. 90–113.
  • Y. Amirat, K. Hamdache and F. Murat, Global weak solutions to equations of motion for magnetic fluids, J. Math. Fluid Mech. 10(3) (2008), pp. 326–351. doi: 10.1007/s00021-006-0234-6
  • Y. Amirat and K. Hamdache, Unique solvability of equations of motion for ferrofluids, Nonlinear Anal. 73(2) (2010), pp. 471–494. doi: 10.1016/j.na.2010.03.042
  • P. Angot, M. Jobelin and LatchéJ.C, Error analysis of the penalty-projection method for the time dependent Stokes equations, Int. J. Finite 6(1) (2009), pp. 1–26.
  • M.A. Belenli, S. Kaya, L.G. Rebholz and N.E. Wilson, A subgrid stabilization finite element method for incompressible magnetohydrodynamics, Int. J. Comput. Math. 90(7) (2013), pp. 1506–1523. doi: 10.1080/00207160.2012.758363
  • S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
  • M. Case, V. Ervin, A. Linke and L. Rebholz, A connection between Scott–Vogelius elements and grad-div stabilization Taylor-Hood FE approximations of the Navier–Stokes equations, SIAM J. Numer. Anal. 49(4) (2011), pp. 1461–1481. doi: 10.1137/100794250
  • A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22(104) (1968), pp. 745–762. doi: 10.1090/S0025-5718-1968-0242392-2
  • A.J. Chorin, On the convergence of discrete approximations of the Navier–Stokes equations, Math. Comput. 23(106) (1969), pp. 341–353. doi: 10.1090/S0025-5718-1969-0242393-5
  • J.S. Dahler and L.E. Scriven, Angular momentum of continua, Nature. 192 (1961), pp. 36–37. doi: 10.1038/192036a0
  • J.S. Dahler and L.E. Scriven, Theory of structured continua. I. General consideration of angular momentum and polarization, Proc. R. Soc. 275 (1963), pp. 504–527. doi: 10.1098/rspa.1963.0183
  • B.Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differ. Equ. 249 (1) (2010), pp. 200–213. doi: 10.1016/j.jde.2010.03.016
  • A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), pp. 1–18.
  • A.C. Eringen, Microcontinuum Field Theories I. Foundations and Solids, Springer, New York, 1999.
  • A.C. Eringen, Microcontinuum Field Theories II. Fluent Media, Springer, New York, 2001.
  • F. Hecht, New development in freefem++, J. Numer. Math. 20 (3/4) (2012), pp. 251–266.
  • M. Fortin, Calcul nume´rique des ecoulements fluides de Bingham et des fluides Newtoniens incompressible par des me´thodes d'ele´ments finis, Doctoral thesis, 1972.
  • V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer-Verlag, 1986.
  • J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressibility flows, Comput. Methods Appl. Mech. Engrg. 195(44) (2006), pp. 6011–6045. doi: 10.1016/j.cma.2005.10.010
  • J.L. Guermond, R. Pasquetti and B. Popov, Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys. 230(11) (2011), pp. 4248–4267. doi: 10.1016/j.jcp.2010.11.043
  • J.L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier–Stokes equations by finite elements projection methods, Numer. Math. 80(2) (1998), pp. 207–238. doi: 10.1007/s002110050366
  • M. Gunzburger, Finite Element Methods for Incompressible Viscous Flows: A Guide to Theory, Practice and Algorithms, Academic Press, Boston, MA, 1989.
  • J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for the second order time discretization, SIAM J. Numer. Anal. 27(2) (1990), pp. 353–384. doi: 10.1137/0727022
  • M. Jobelin, C. Lapuerta, LatchéJ.C., P. Angot and B. Piar, A finite element penalty-projection method for incompressible fows, J. Comput. Phys. 217(2) (2006), pp. 502–518. doi: 10.1016/j.jcp.2006.01.019
  • G. Kaszewicz, Micropolar Fluids. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, MA, 1999.
  • A. Labovschii, W. Layton, M. Manica, M. Neda and L. Rebholz, The stabilized extrapolated trapezoidal finite element method for the Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 198(9) (2009), pp. 958–974.
  • A. Linke, M. Neilan, L. Rebholz and N. Wilson, A connection between coupled and penalty projection timestepping schemes with FE spacial discretization for the Navier–Stokes equations, preprint (2016), to appear in J. Numer. Math. doi: 10.1515/jnma-2016-1024.
  • M. Marion and R. Temam, Navier–Stokes equations: Theory and approximation, in Handbook of Numerical Analysis, Vol. 6, North-Holland, Amsterdam, 1998, pp. 503–689.
  • R.H. Nochetto, A.J. Salgado and I. Tomas, The micropolar Navier–Stokes equations: A priori error analysis, Math. Models Methods Appl. Sci. 24(7) (2014), pp. 1237–1264. doi: 10.1142/S0218202514500018
  • R.H. Nochetto, A.J. Salgado and I. Tomas, The equations of ferrohydrodynamics: Modeling and numerical methods, Math. Models Methods Appl. Sci. 26(13) (2016), pp. 2393–2449. doi: 10.1142/S0218202516500573
  • E. Ortega-Torres and M. Rojas-Medar, Optimal error estimate of the penalty finite element method for the micropolar fluid equations, Numer. Funct. Anal. Optim. 29(5/6) (2008), pp. 612–637. doi: 10.1080/01630560802099555
  • A. Prohl, On pressure approximation via projection methods for nonstationary incompressible Navier–Stokes equations, SIAM J. Numer. Anal. 47(1) (2008), pp. 158–180. doi: 10.1137/07069609X
  • J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. thesis, Pennsylvania State University, State College, PA, 1994.
  • R. Rannacher, On Chorin's Projection Method for the Incompressible Navier–Stokes Equations. The Navier–Stokes equations II– Theory and Numerical Methods. Proceedings of a Conference held in Oberwolfach, Germany, 1991. (Eds.) J.G. Heywood, K. Masuda, R. Rautmann, V.A. Solonnikov, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1992, pp. 167–183.
  • R.E. Rosensweig, Ferrohydrodynamics, Dover, New York, 1997.
  • A.J. Salgado, Convergence analysis of fractional time-stepping techniques for incompressible fluids with microstructure, J. Sci. Comput. 64 (2015), pp. 216–233. doi: 10.1007/s10915-014-9926-x
  • R. Temam, Navie–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.
  • S. Zhang, A new family of stable mixed finite elements for the 3d Stokes equations, Math. Comput. 74(250) (2005), pp. 543–554. doi: 10.1090/S0025-5718-04-01711-9
  • S. Zhang, Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo, 48(3) (2011), pp. 211–244. doi: 10.1007/s10092-010-0035-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.