307
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Efficient time discretization scheme for nonlinear space fractional reaction–diffusion equations

, , , &
Pages 1274-1291 | Received 27 Mar 2017, Accepted 29 Sep 2017, Published online: 29 Nov 2017

References

  • L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction–diffusion problems, SIAM J. Sci. Comput. 39(1) (2017), pp. 214–228. doi: 10.1137/16M1064714
  • E.O. Asante-Asamani, An exponential time differencing scheme with a real distinct poles rational function for advection-diffusion reaction equations, Ph.D. diss., University of Wisconsin-Milwaukee, 2016.
  • E.O. Asante-Asamani, A.Q.M. Khaliq, and B.A. Wade, A real distinct poles exponential time differencing scheme for reaction–diffusion systems, J. Comput. Appl. Math. 299 (2016), pp. 24–34. doi: 10.1016/j.cam.2015.09.017
  • U.M. Ascher, S.J. Ruuth, and B. Wetton, Implicit–explicit methods for time dependent pde's, SIAM J. Numer. Anal. 32 (1995), pp. 797–823. doi: 10.1137/0732037
  • B. Baeumer, M. Kovács, and M.M. Meerschaert, Fractional reproduction-dispersal equations and heavy tail dispersal kernels, Bull. Math. Biol. 69(7) (2007), pp. 2281–2297. doi: 10.1007/s11538-007-9220-2
  • B. Baeumer, M. Kovács, and M.M. Meerschaert, Numerical solutions for fractional reaction–diffusion equations, Comput. Math. Appl. 55(10) (2008), pp. 2212–2226. doi: 10.1016/j.camwa.2007.11.012
  • D. Baleanu, A.K. Golmankhaneh, R. Nigmatullin, and A.K. Golmankhaneh, Fractional Newtonian mechanics, Cent. Eur. J. Phys. 8(120) (2010), pp. 0–0.
  • G. Beylkin, J.M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), pp. 362–387. doi: 10.1006/jcph.1998.6093
  • A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction–diffusion equations, BIT Numer. Math. 54 (2014), pp. 937–954. doi: 10.1007/s10543-014-0484-2
  • K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction–diffusion equations, SIAM J. Sci. Comput. 34(4) (2012), pp. A2145–A2172. doi: 10.1137/110847007
  • Y.J. Choi and S.K. Chung, Finite element solutions for the space fractional diffusion equation with a nonlinear source term, Abstr. Appl. Anal. 2012, Article ID 596184, 25 pages doi: 10.1155/2012/596184.
  • S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), pp. 430–455. doi: 10.1006/jcph.2002.6995
  • C.F. Curtis and J.O. Hirchfelder, Integration of stiff equations, Proc. Nat. Acad. Sci. USA 38 (1952), pp. 33–53.
  • L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003), pp. 3413–3442. doi: 10.1155/S0161171203301486
  • M. Dehghan and M. Safarpoor, The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations, Math. Methods Appl. Sci. 39 (2016), pp. 3979–3995. doi: 10.1002/mma.3839
  • M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: Meshless interpolating element free Galerkin (IEFG) and finite element methods, Eng. Anal. Bound. Elem. 64 (2016), pp. 205–221. doi: 10.1016/j.enganabound.2015.11.011
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations 26(2) (2010), pp. 448–479.
  • Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numer. Math. 45 (2005), pp. 307–328. doi: 10.1007/s10543-005-7141-8
  • M.E. Farquhar, T.J. Moroney, Q. Yang, and I.W. Turner, GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion, SIAM J. Sci. Comput. 38(3) (2016), pp. C127–C149. doi: 10.1137/15M1021672
  • I. Gohberg and A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogues, Matem. Issled. 7 (1972), pp. 201–223.
  • W. Hairer and G. Wanner, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, Springer-Verlag, Berlin, 1991.
  • R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, Springer-Verlag, Berlin, 2003.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation I, Fract. Calc. Appl. Anal. 8 (2005), pp. 323–341.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), pp. 333–349.
  • A.Q.M. Khaliq, J. Martin-Vanquero, B.A. Wade, and M. Yousuf, Smoothing schemes for reaction–diffusion systems with nonsmooth data, J. Comput. Appl. Math. 223 (2009), pp. 374–386. doi: 10.1016/j.cam.2008.01.017
  • A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations in Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.
  • B. Kleefeld, A.Q.M. Khaliq, and B.A. Wade, An ETD Crank–Nicolson method for reaction–diffusion systems, Numer. Methods Partial Differential Equations 28 (2012), pp. 1309–1335. doi: 10.1002/num.20682
  • S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), pp. 72–88. doi: 10.1016/j.jcp.2004.08.006
  • N. Laskin, Fractional Schrodinger equation, Phys. Rev. E 66 (2002), p. 056108. doi: 10.1103/PhysRevE.66.056108
  • R.J. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations, Society for Industrial and Applied Mathematics, Seattle, 2007.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • C. Moler and C.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978), pp. 801–826. doi: 10.1137/1020098
  • C. Moler and C.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45(1) (2003), pp. 3–49. doi: 10.1137/S00361445024180
  • S. Momani and R. Qaralleh, Numerical approximations and Padé approximants for a fractional population growth model, Appl. Math. Model. 31(9) (2007), pp. 1907–1914. doi: 10.1016/j.apm.2006.06.015
  • M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004.
  • J.A. Ochoa-Tapia, F.J. Valdes-Parada, and J. Alvarez-Ramirez, A fractional-order Darcy's law, Phys. A 374 (2007), pp. 1–14. doi: 10.1016/j.physa.2006.07.033
  • M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci. (2006), pp. 1–12. doi: 10.1155/IJMMS/2006/48391
  • M.D. Ortigueira, Fractional calculus for scientists and engineers, in Lecture Notes in Electrical Engineering, Vol. 84, Springer, Dordrecht, 2011.
  • K.M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, J. Comput. Nonlinear Dyn. 12 (2017), p. 031010-7.
  • I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Heidelberg, 2011.
  • E. Pindza and K.M. Owolabi, Fourier spectral method for higher order space fractional reaction–diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), pp. 112–128. doi: 10.1016/j.cnsns.2016.04.020
  • I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, CA, 1999.
  • I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B.M.V. Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys. 228 (2009), pp. 3137–3153. doi: 10.1016/j.jcp.2009.01.014
  • A. Saadatmandi, M. Dehghan, and M. Azizi, The Sinc-Legendre collocation method for a class of fractional convection–diffusion equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul. 17(11) (2012), pp. 4125–4136. doi: 10.1016/j.cnsns.2012.03.003
  • F.J. Valdes-Parada, J.A. Ochoa-Tapia, and J. Alvarez-Ramirez, Effective medium equations for fractional Fick's law in porous media, Phys. A 373 (2007), pp. 339–353. doi: 10.1016/j.physa.2006.06.007
  • D.A. Voss and A.Q.M. Khaliq, Parallel LOD methods for second-order time dependent pdes, Comput. Math. Appl. 30(10) (1994), pp. 25–35. doi: 10.1016/0898-1221(95)00154-Q
  • Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space-fractional derivatives, Appl. Math. Model. 34 (2010), pp. 200–218. doi: 10.1016/j.apm.2009.04.006
  • Q. Yang, I. Turner, F. Liu, and M. Ilic, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput. 33 (2011), pp. 1159–1180. doi: 10.1137/100800634
  • M. Yousuf, A.Q.M. Khaliq, and B. Kleefeld, The numerical approximation of nonlinear Black–Scholes model for exotic path-dependent American options with transaction cost, Int. J. Comput. Math. 89(9) (2012), pp. 1239–1254. doi: 10.1080/00207160.2012.688115
  • B. Yu, X.Y. Jiang, and H.Y. Xu, A novel compact numerical method for solving the two-dimensional non-linear fractional reaction–subdiffusion equation, Numer. Algorithms 68 (2015), pp. 923–950. doi: 10.1007/s11075-014-9877-1
  • S. Zhai, D. Gui, J. Zhao, and X. Feng, High accuracy spectral method for the space-fractional diffusion equations, J. Math. Study 47(3) (2014), pp. 274–286.
  • X. Zhao, Z. Sun, and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation, SIAM J. Sci. Comput. 36 (2014), pp. A2865–A2886. doi: 10.1137/140961560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.