107
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions

ORCID Icon & ORCID Icon
Pages 170-198 | Received 14 Aug 2017, Accepted 11 Nov 2017, Published online: 09 Jan 2018

References

  • P. Assari, H. Adibi, and M. Dehghan, A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis, J. Comput. Appl. Math. 239(1) (2013), pp. 72–92. doi: 10.1016/j.cam.2012.09.010
  • P. Assari, H. Adibi, and M. Dehghan, A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels, J. Comput. Appl. Math. 267 (2014), pp. 160–181. doi: 10.1016/j.cam.2014.01.037
  • P. Assari, H. Adibi, and M. Dehghan, A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algorithms 67(2) (2014), pp. 423–455. doi: 10.1007/s11075-013-9800-1
  • P. Assari, H. Adibi, and M. Dehghan, The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis, Appl. Numer. Math. 81 (2014), pp. 76–93. doi: 10.1016/j.apnum.2014.02.013
  • P. Assari and M. Dehghan, A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions, Eur. Phys. J. Plus 132 (2017), pp. 1–23. doi: 10.1140/epjp/i2017-11467-y
  • P. Assari and M. Dehghan, The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision, Eng. Comput. 33(4) (2017), pp. 853–870. doi: 10.1007/s00366-017-0502-5
  • K.E. Atkinson, The numerical evaluation of fixed points for completely continuous operators, SIAM J. Numer. Anal. 10 (1973), pp. 799–807. doi: 10.1137/0710065
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
  • K.E. Atkinson and G. Chandler, Boundary integral equation methods for solving Laplace's equation with nonlinear boundary conditions: The smooth boundary case, Math. Comput. 55(192) (1990), pp. 451–472.
  • K.E. Atkinson and D. Chien, Piecewise polynomial collocation for boundary integral equations, SIAM J. Sci. Comput. 16(3) (1995), pp. 651–681. doi: 10.1137/0916040
  • G. Barnett and L.D. Tongo, Data Structures and Algorithms: Annotated Reference with Examples, DotNetSlackers, 2008.
  • A. Bejancu Jr, Local accuracy for radial basis function interpolation on finite uniform grids, J. Approx. Theory 99(2) (1999), pp. 242–257. doi: 10.1006/jath.1999.3332
  • M.D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.
  • W. Chen and W. Lin, Galerkin trigonometric wavelet methods for the natural boundary integral equations, Appl. Math. Comput. 121(1) (2001), pp. 75–92.
  • W. Chen, Z. Fu, and C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods, Springer-Verlag, Berlin, 2014.
  • P. Cheng, J. Huang, and Z. Wang, Mechanical quadrature methods and extrapolation for solving nonlinear boundary Helmholtz integral equations, Appl. Math. Mech. 32(12) (2011), pp. 1505–1514. doi: 10.1007/s10483-011-1519-7
  • J. Duchon, Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces, Springer Berlin Heidelberg, Berlin, 1977, pp. 85–100.
  • W. Fang, Y. Wang, and Y. Xu, An implementation of fast wavelet Galerkin methods for integral equations of the second kind, J. Sci. Comput. 20(2) (2004), pp. 277–302. doi: 10.1023/B:JOMP.0000008723.85496.ce
  • G.E. Fasshauer, Meshfree methods, in Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds., American Scientific Publishers, Valencia, 2005.
  • R. Franke, Scattered data interpolation: Tests of some methods, Math. Comput. 38(157) (1982), pp. 181–200.
  • Z.-J. Fu, W. Chen, and H.-T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys. 235 (2013), pp. 52–66. doi: 10.1016/j.jcp.2012.10.018
  • Z. Fu, W. Chen, and L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models, Eng. Anal. Bound. Elem. 57 (2015), pp. 37–46. doi: 10.1016/j.enganabound.2014.09.003
  • M. Ganesh and O. Steinbach, Nonlinear boundary integral equations for harmonic problems, J. Integral Equ. Appl. 11(4) (1999), pp. 437–459. doi: 10.1216/jiea/1181074294
  • J. Gao and Y.-L. Jiang, Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel, J. Comput. Appl. Math. 215(1) (2008), pp. 242–259. doi: 10.1016/j.cam.2007.04.010
  • H. Harbrecht and R. Schneider, Wavelet Galerkin schemes for boundary integral equations–implementation and quadrature, SIAM J. Sci. Comput. 27(4) (2006), pp. 1347–1370. doi: 10.1137/S1064827503429387
  • J. Helsing and A. Karlsson, An explicit kernel–split panel-based Nystrom scheme for integral equations on axially symmetric surfaces, J. Comput. Phys. 272 (2014), pp. 686–703. doi: 10.1016/j.jcp.2014.04.053
  • H. Kaneko and Y. Xu, Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind, Math. Comput. 62(206) (1994), pp. 739–753. doi: 10.1090/S0025-5718-1994-1218345-X
  • X. Li and J. Zhu, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math. 230(1) (2009), pp. 314–328. doi: 10.1016/j.cam.2008.12.003
  • W. McLean, A spectral Galerkin method for a boundary integral equation, Math. Comput. 47(176) (1986), pp. 597–607. doi: 10.1090/S0025-5718-1986-0856705-2
  • J. Meinguet, Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys. 30(2) (1979), pp. 292–304. doi: 10.1007/BF01601941
  • D. Mirzaei and M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. 60(3) (2010), pp. 245–262. doi: 10.1016/j.apnum.2009.12.003
  • F.J. Narcowich, N. Sivakumar, and J.D. Ward, On condition numbers associated with radial-function interpolation, J. Math. Anal. Appl. 186(2) (1994), pp. 457–485. doi: 10.1006/jmaa.1994.1311
  • K. Parand and J.A. Rad, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput. 218(9) (2012), pp. 5292–5309.
  • X. Tang, Z. Pang, T. Zhu, and J. Liu, Wavelet numerical solutions for weakly singular Fredholm integral equations of the second kind, Wuhan Univ. J. Nat. Sci. 12(3) (2007), pp. 437–441. doi: 10.1007/s11859-006-0110-5
  • T. Von Petersdorff and C. Schwab, Wavelet approximations for first kind boundary integral equations on polygons, Numer. Math. 74(4) (1996), pp. 479–516. doi: 10.1007/s002110050226
  • G. Wahba, Convergence Rate of ‘Thin Plate’ Smoothing Splines when the Data are Noisy (preliminary report), Lecture Notes in Math., Vol. 757, Springer, Heidelberg, 1979.
  • H. Wendland, Scattered Data Approximation, Cambridge University Press, New York, 2005.
  • Y. Yan, A fast numerical solution for a second kind boundary integral equation with a logarithmic kernel, SIAM J. Numer. Anal. 31(2) (1994), pp. 477–498. doi: 10.1137/0731026
  • P. Zhang and Y. Zhang, Wavelet method for boundary integral equations, J. Comput. Math. 18(1) (2000), pp. 25–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.