121
Views
6
CrossRef citations to date
0
Altmetric
Original Article

The iterative algorithm for solving a class of generalized coupled Sylvester-transpose equations over centrosymmetric or anti-centrosymmetric matrix

&
Pages 1576-1594 | Received 15 Mar 2017, Accepted 03 Feb 2018, Published online: 03 Apr 2018

References

  • A.L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973), pp. 151–162. doi: 10.1016/0024-3795(73)90049-9
  • Z.J. Bai, The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl. 26 (2005), pp. 1100–1114. doi: 10.1137/S0895479803434185
  • J.K. Baksalary and R. Kala, The matrix equation AXB+CY D=E, Linear Algebra Appl. 30 (1980), pp. 141–147. doi: 10.1016/0024-3795(80)90189-5
  • F.P.A. Beik and D.K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equations, Comput. Math. Appl. 62 (2011), pp. 4605–4613. doi: 10.1016/j.camwa.2011.10.043
  • W. Chen, X. Wang, and T. Zhong, The structure of weighting coefficient matrices of harmonic differential quadrature and its application, Comm. Numer. Methods Engrg. 12 (1996), pp. 455–460. doi: 10.1002/(SICI)1099-0887(199608)12:8<455::AID-CNM989>3.0.CO;2-M
  • P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge University Press, Cambridge, 1989.
  • L. Datta and S. Morgera, Some results on matrix symmetries and a pattern recognition application, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), pp. 992–994. doi: 10.1109/TASSP.1986.1164890
  • L. Datta and S.D. Morgera, On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Systems Signal Process. 8 (1989), pp. 71–96. doi: 10.1007/BF01598746
  • M. Dehghan and M. Hajarian, An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation, Appl. Math. Comput. 202 (2008), pp. 571–588.
  • M. Dehghan and M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model. 34 (2010), pp. 639–654. doi: 10.1016/j.apm.2009.06.018
  • M. Dehghan and M. Hajarian, The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra Appl. 432 (2010), pp. 1531–1552. doi: 10.1016/j.laa.2009.11.014
  • M. Dehghan and M. Hajarian, On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations, Linear Multilinear Algebra 59 (2011), pp. 1281–1309. doi: 10.1080/03081087.2010.524363
  • M. Dehghan and M. Hajarian, The (R, S)-symmetric and (R, S)-skew symmetric solutions of the pair of matrix equations A1XB1=C1 and A2XB2=C2, Bull. Iranian Math. Soc. 37 (2011), pp. 273–283.
  • M. Dehghan and M. Hajarian, Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices, J. Vib. Control 17 (2011), pp. 1295–1298. doi: 10.1177/1077546309351893
  • M. Dehghan and M. Hajarian, The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation AYB+CYTD=E, Math. Methods Appl. Sci. 34 (2011), pp. 1562–1579. doi: 10.1002/mma.1459
  • M. Dehghan and M. Hajarian, Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation, J. Comput. Appl. Math. 235 (2011), pp. 2969–2978. doi: 10.1016/j.cam.2011.03.021
  • M. Dehghan and M. Hajarian, Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. Syst. 10 (2012), pp. 905–912. doi: 10.1007/s12555-012-0506-2
  • M. Dehghan and M. Hajarian, The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci. 43 (2012), pp. 1580–1590. doi: 10.1080/00207721.2010.549584
  • M. Dehghan and M. Hajarian, On the generalized reflexive and anti-reflexive solutions to a system of matrix equations, Linear Algebra Appl. 437 (2012), pp. 2793–2812. doi: 10.1016/j.laa.2012.07.004
  • M. Dehghan and M. Hajarian, Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equation, Eng. Comput. 29 (2012), pp. 528–560. doi: 10.1108/02644401211235870
  • M. Dehghan and M. Hajarian, Construction of an iterative method for solving generalized coupled Sylvester matrix equations, Trans. Inst. Meas. Control 35(8) (2013), pp. 961–970. doi: 10.1177/0142331212465105
  • J.-P. Delmas, On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process. 47 (1999), pp. 1402–1406. doi: 10.1109/78.757231
  • Y.B. Deng, Z.Z. Bai, and Y.H. Gao, Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl. 13 (2006), pp. 801–823. doi: 10.1002/nla.496
  • F. Ding, P.X. Liu, and J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput. 197 (2008), pp. 41–50.
  • K.H. Guo, X.Y. Hu, and L. Zhang, A new iteration method for the matrix equation AX = B, Appl. Math. Comput. 187 (2007), pp. 1434–1441.
  • M. Hajarian, Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations, J. Franklin Inst. 350 (2013), pp. 3328–3341. doi: 10.1016/j.jfranklin.2013.07.008
  • M. Hajarian, Finite algorithms for solving the coupled Sylvester-conjugate matrix equations over reflexive and Hermitian reflexive matrices, Int. J. Syst. Sci. 46(3) (2015), pp. 488–502. doi: 10.1080/00207721.2013.790999
  • M. Hajarian, Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices, Numer. Algorithms 73 (2016), pp. 591–609. doi: 10.1007/s11075-016-0109-8
  • M. Hajarian, Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations, J. Franklin Inst. 353 (2016), pp. 1168–1185. doi: 10.1016/j.jfranklin.2015.05.024
  • M. Hajarian, Least squares solution of the linear operator equation, J. Optim. Theory Appl. 170 (2016), pp. 205–219. doi: 10.1007/s10957-015-0737-5
  • M. Hajarian, New finite algorithm for solving the generalized nonhomogeneous Yakubovich-transpose matrix equation, Asian J. Control 19 (2017), pp. 164–172. doi: 10.1002/asjc.1343
  • R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991, pp. 259–260.
  • D. Hua, On the symmetric solutions of linear matrix equations, Linear Algebra Appl. 131 (1990), pp. 1–7. doi: 10.1016/0024-3795(90)90370-R
  • G.X. Huang, F. Yin, and K. Guo, An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C, J. Comput. Appl. Math. 212 (2008), pp. 231–244. doi: 10.1016/j.cam.2006.12.005
  • B. Kägström and P. van Dooren, A generalized state-space approach for the additive decomposition of a transfer matrix, J. Numer. Linear Algebra Appl. 1 (1992), pp. 165–181.
  • B. Kägström and L. Westin, Generalized Schur methods with condition estimators for solving the generalized Sylvester equation, IEEE Trans. Automat. Control 34 (1989), pp. 745–751. doi: 10.1109/9.29404
  • S. Karimi and F. Toutounian, The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides, Appl. Math. Comput. 177 (2006), pp. 852–862.
  • M. Khorsand Zak and F. Toutounian, Nested splitting conjugate gradient method for matrix equation AXB=C and preconditioning, Comput. Math. Appl. 66 (2013), pp. 269–278. doi: 10.1016/j.camwa.2013.05.004
  • J.R. Li and J. White, Low-rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl. 24 (2002), pp. 260–280. doi: 10.1137/S0895479801384937
  • F.L. Li, L.S. Gong, X.Y. Hu, and L. Zhang, Successive projection iterative method for solving matrix AX = B, J. Comput. Appl. Math. 234 (2010), pp. 2405–2410. doi: 10.1016/j.cam.2010.03.008
  • J.F. Li, Z.Y. Peng, and J.J. Peng, The bisymmetric solution of matrix equation AX = B over a matrix inequality constraint, Math. Numer. Sin. 35 (2013), pp. 137–150 (in Chinese).
  • K.F. Liang and J.Z. Liu, Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations A1XB1+C1XTD1=M1, A2XB2+C2XTD2=M2, Appl. Math. Comput. 218 (2011), pp. 3166–3175.
  • A.P. Liao, Z.Z. Bai, and Y. Lei, Best approximate solution of matrix equation AXB+CY D=E, SIAM J. Matrix Anal. Appl. 27 (2005), pp. 675–688. doi: 10.1137/040615791
  • P.G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general Toeplitz matrices, Comput. Math. Appl. 50 (2005), pp. 741–752. doi: 10.1016/j.camwa.2005.03.011
  • J.J. Moreau, Decomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C.R. Acad. Sci. Paris 225 (1962), pp. 238–240.
  • A. Navarra, P.L. Odell, and D.M. Young, A representation of the general common solution to the matrix equations A1XB1=C1, A2XB2=C2 with applications, Comput. Math. Appl. 41 (2001), pp. 929–935. doi: 10.1016/S0898-1221(00)00330-8
  • Y.X. Peng, X.Y. Hu, and L. Zhang, An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C, Appl. Math. Comput. 160 (2005), pp. 763–777.
  • Z.Y. Peng, L. Wang, and J.J Peng, The solution of matrix equation AX = B over a matrix inequality constraint, SIAM J. Matrix Anal. Appl. 33 (2012), pp. 554–568. doi: 10.1137/100808678
  • T. Penzl, A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput. 21 (2000), pp. 1401–1418. doi: 10.1137/S1064827598347666
  • F. Piao, Q. Zhang, and Z. Wang, The solution to matrix equation AX+XTC=B, J. Franklin Inst. 344 (2007), pp. 1056–1062. doi: 10.1016/j.jfranklin.2007.05.002
  • N. Shinozaki and M. Sibuya, Consistency of a pair of matrix equations with an application, Keio Eng. Rep. 27 (1974), pp. 141–146.
  • F. Toutounian and S. Karimi, Global least squares method (GL-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput. 178 (2006), pp. 452–460.
  • W.F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 380 (2004), pp. 199–211. doi: 10.1016/j.laa.2003.10.007
  • Q.W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 384 (2004), pp. 43–54. doi: 10.1016/j.laa.2003.12.039
  • Q.W. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl. 49 (2005), pp. 641–650. doi: 10.1016/j.camwa.2005.01.014
  • Q.W. Wang and C.K. Li, Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl. 430 (2009), pp. 1626–1640. doi: 10.1016/j.laa.2008.05.031
  • Q.W. Wang and F. Zhang, The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra 17 (2008), pp. 88–101.
  • Q.W. Wang, J.H. Sun, and S.Z. Li, Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl. 353 (2002), pp. 169–182. doi: 10.1016/S0024-3795(02)00303-8
  • M. Wang, X. Cheng, and M. Wei, Iterative algorithms for solving the matrix equation AXB+CXTD=E, Appl. Math. Comput. 187 (2007), pp. 622–629.
  • Q.W. Wang, H.S. Zhang, and S.W. Yu, On solutions to the quaternion matrix equation AXB+CY D= E, Electron. J. Linear Algebra 17 (2008), pp. 343–358.
  • Q.W. Wang, H.X. Chang, and Q. Ning, The common solution to six quaternion matrix equations with applications, Appl. Math. Comput. 198 (2008), pp. 209–226.
  • J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon. 92 (1985), pp. 711–717. doi: 10.1080/00029890.1985.11971719
  • Y.J. Xie, N. Huang, and C.F. Ma, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Comput. Math. Appl. 67 (2014), pp. 2071–2084. doi: 10.1016/j.camwa.2014.04.012
  • L.J. Zhao, X.Y. Hu, and L. Zhang, Least squares solutions to AX = B for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation, Linear Algebra Appl. 428 (2008), pp. 871–880. doi: 10.1016/j.laa.2007.08.019
  • B. Zhou, G.R. Duan, and Z.Y. Li, Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett. 58 (2009), pp. 327–333. doi: 10.1016/j.sysconle.2008.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.