158
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Decoupled Crank–Nicolson/Adams–Bashforth scheme for the Boussinesq equations with smooth initial data

&
Pages 594-621 | Received 23 Jul 2017, Accepted 09 Mar 2018, Published online: 02 Apr 2018

References

  • R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  • M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), pp. 211–224. doi: 10.1007/BF01399555
  • P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  • X.L. Feng and Y.N. He, Convergence of the Crank–Nicolson/Newton scheme for nonlinear parabolic problem, Acta Math. Sci. 36(1) (2016), pp. 124–138. doi: 10.1016/S0252-9602(15)30083-7
  • V. Girault and P.A. Raviart, Finite element methods for the Navier–Stokes equations, Spinger-Verlag, Berlin, 1986.
  • Y.N. He, Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 41 (2003), pp. 1263–1285. doi: 10.1137/S0036142901385659
  • Y.N. He, Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data, Math. Comput. 77 (2008), pp. 2097–2124. doi: 10.1090/S0025-5718-08-02127-3
  • Y.N. He, Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations, Numer. Math. 123 (2013), pp. 67–96. doi: 10.1007/s00211-012-0482-8
  • Y.N. He and K.T. Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations, Numer. Math. 79 (1998), pp. 77–106. doi: 10.1007/s002110050332
  • Y.N. He and J. Li, Numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations, Int. J. Numer. Methods Fluids 62(6) (2010), pp. 647–659.
  • Y.N. He and W.W. Sun, Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 45 (2007), pp. 837–869. doi: 10.1137/050639910
  • Y.N. He, P.Z. Huang, and X.L. Feng, H2-Stability of the first order fully discrete schemes for the time-dependent Navier–Stokes equations, J. Sci. Comput. 62 (2015), pp. 230–264. doi: 10.1007/s10915-014-9854-9
  • J.G. Heywood and R. Ranncher, Finite element approximations of the nonstationary Navier–Stokes problem, Part I: Regularity of solutions and second-order time discretization, SIAM J. Numer. Anal. 19 (1982), pp. 275–311. doi: 10.1137/0719018
  • J.G. Heywood and R. Rannacher, Finite element approximations of the nonstationary Navier–Stokes problem. Part IV: Error estimates for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), pp. 353–384. doi: 10.1137/0727022
  • A.T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier–Stokes equations, IMA J. Numer. Anal. 20 (2000), pp. 633–667. doi: 10.1093/imanum/20.4.633
  • R.B. Kellogg and J.E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal. 21 (1976), pp. 397–431. doi: 10.1016/0022-1236(76)90035-5
  • A. Labovsky, W.J. Layton, C.C. Manica, M. Neda, and L.G. Rebholz, The stabilized extrapolated trapezoidal finite element method for the Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 198 (2009), pp. 958–974. doi: 10.1016/j.cma.2008.11.004
  • S. Larsson, The long time behavior of finite element approximations of solutions to semi-linear parabolic problems, SIAM J. Numer. Anal. 26 (1989), pp. 348–365. doi: 10.1137/0726019
  • M. Mu and J.C. Xu, A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 45 (2007), pp. 1801–1813. doi: 10.1137/050637820
  • Y.X. Qian and T. Zhang, On error estimates of the projection method for the time-dependent natural convection problem: First order scheme, Comput. Math. Appl. 72 (2016), pp. 1444–1465. doi: 10.1016/j.camwa.2016.07.013
  • Y.X. Qian and T. Zhang, The second order projection method in time for the time-dependent natural convection problem, Appl. Math. 61 (2016), pp. 299–315. doi: 10.1007/s10492-016-0133-y
  • C. Taylor and P. Hood, A numerical solution of the Navier–Stokes equations using the finite element technique, Comput. Fluids. 1 (1973), pp. 73–100. doi: 10.1016/0045-7930(73)90027-3
  • R. Temam, Navier–Stokes equation: Theory and numerical analysis, 3rd ed., North-Holland, Amsterdam, New York, Oxford, 1984.
  • V. Thomée, Glerkin finite element methods for parabolic problems, 2nd ed., Springer, Berlin/Heidelberg, 2006.
  • Y.Z. Zhang and Y.R. Hou, The Crank–Nicolson extrapolation stabilized finite element method for natural convection problem, Math. Probl. Eng. 2014 (2014), pp. 1–22.
  • T. Zhang and H.X. Liang, Decoupled stabilized finite element methods for the Boussinesq equations with temperature-dependent coefficients, Int. J. Heat Mass Transf. 110 (2017), pp. 151–165. doi: 10.1016/j.ijheatmasstransfer.2017.03.002
  • T. Zhang and Z.Z. Tao, Decoupled scheme for time-dependent natural convection problem II: time semidiscrete, Math. Probl. Eng. 2014 (2014), pp. 1–23.
  • T. Zhang and J.Y. Yuan, Two novel decoupling algorithms for the steady Stokes–Darcy model based on two-grid discretizations, Discrete Contin. Dyn. Syst. B 19 (2014), pp. 849–865. doi: 10.3934/dcdsb.2014.19.849
  • Y.Z. Zhang, Y.R. Hou, and J.P. Zhao, Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem, Comput. Math. Appl. 68 (2014), pp. 543–567. doi: 10.1016/j.camwa.2014.06.008
  • T. Zhang, J.Y. Yuan, and Z.Y. Si, Decoupled two-grid finite element method for the time-dependent natural convection problem I: Spatial discretization, Numer. Methods Partial Differ. Eq. 31 (2015), pp. 2135–2168. doi: 10.1002/num.21987
  • T. Zhang, X. Zhao, and P.Z. Huang, Decoupled two level finite element methods for the steady natural convection problem, Numer. Algorithms 68 (2015), pp. 837–866. doi: 10.1007/s11075-014-9874-4
  • T. Zhang, J.J. Jin, and S.W. Xu, The Euler implicit/explicit scheme for the Boussinesq equations, Bound. Value Probl. 2016 (2016), pp. 181–205. doi: 10.1186/s13661-016-0693-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.