287
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A numerical model on pulsatile flow of magnetic nanoparticles as drug carrier suspended in Herschel–Bulkley fluid through an arterial stenosis under external magnetic field and body force

&
Pages 1763-1786 | Received 10 Apr 2018, Accepted 30 Sep 2018, Published online: 15 Oct 2018

References

  • P. Akbarzadeh, Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model, Comput. Meth. Program Biomed. 126 (2016), pp. 3–19. doi: 10.1016/j.cmpb.2015.12.016
  • I.J. Amalraj, S. Narasimman, and A. Kandasamy, Rheodynamic Lubrication of an Externally Pressured Thrust Bearing using Herschel–Bulkley Fluid with Sinusoidal injection, J. Appl. Fluid Mech. 5(4) (2012), pp. 71–79.
  • O.A. Beg, T.A. Beg, R. Bhargava, S. Rawat, and D. Tripathi, Finite element study of pulsatile magneto-hemodynamic non-Newtonian flow and drug diffusion in a porous medium channel, J. Mech. Med. Biol. 12 (2012), pp. 1250081.1–1250081.26.
  • G.W.S. Blair and D.C. Spanner, An Introduction to Biorheology, Elsevier, Amsterdam, 1974.
  • C.G. Caro, Arterial fluid mechanics and atherogenesis, Rec. Adv. Cardiovasc. Dis. 2 (1981), pp. 6–11.
  • S. Chakravarty and P.K. Mandal, A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration, Math. Comput. Model. 24 (1996), pp. 43–58. doi: 10.1016/0895-7177(96)00079-9
  • S. Chakravarty and P.K. Mandal, Two-dimensional blood flow through tapered arteries under stenotic conditions, Int. J. Nonlin. Mech. 35 (2000), pp. 779–793. doi: 10.1016/S0020-7462(99)00059-1
  • S. Chakravarty, A. Datta, and P.K. Mandal, Effect of body acceleration on unsteady flow of blood past a time-dependent arterial stenosis, Math. Comput. Model. 24 (1996), pp. 57–74. doi: 10.1016/0895-7177(96)00090-8
  • S.E. Charm and G.S. Kurland, Viscometry of human blood for shear rate of 100,000 sec−1, Nature, London 206 (1965), pp. 617–618. doi: 10.1038/206617a0
  • P. Chaturani and V. Palanisamy, Casson fluid model for pulsatile flow of blood under periodic body acceleration, Biorheol. 27(5) (1990), pp. 619–630. doi: 10.3233/BIR-1990-27501
  • P. Chaturani and V. Palanisamy, Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration, Biorheol. 27(5) (1990), pp. 747–758. doi: 10.3233/BIR-1990-27510
  • P. Chaturani and V. Palanisamy, Pulsatile flow of blood with periodic body acceleration, Int. J. Eng. Sci. 29(1) (1991), pp. 113–121. doi: 10.1016/0020-7225(91)90081-D
  • P. Chaturani and R. Ponnalagarsamy, Analysis of pulsatile blood flow through stenosed arteries and its applications to cardiovascular diseases, Proc. 13th national conference on fluid mechanics and fluid power, Regional engineering college, Tiruchirappalli, 1984, pp. 463–468.
  • P. Chaturani and R. Ponnalagarsamy, A Study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases, Biorheol. 22(6) (1985), pp. 521–531. doi: 10.3233/BIR-1985-22606
  • R. Ellahi, S.U. Rahman, S. Nadeem, and N.S. Akbar, Blood flow of nano fluid through an artery with composite stenosis and permeable walls, Appl. Nanosci. 4 (2014), pp. 919–926. doi: 10.1007/s13204-013-0253-6
  • M. El-Shahed, Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl. Math. Comput. 138 (2003), pp. 479–488.
  • E.F. El-Shehawey, E.M.E. Eibarbary, N.A.S. Afifi, and M. El-Shahed, Pulsatile flow of blood through a porous medium under periodic body acceleration, Int. J. Theoret. Phys. 39 (2000), pp. 183–188. doi: 10.1023/A:1003611604207
  • E.P. Furlani and E.P. Furlani, A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater. 312 (2007), pp. 187–193. doi: 10.1016/j.jmmm.2006.09.026
  • F. Gentile, M. Ferrari, and P. Decuzzi, The transport of nanoparticles in blood vessels, the effect of vessel permeability and blood rheology, Ann. Biomed. Eng. 36 (2007), pp. 254–261. doi: 10.1007/s10439-007-9423-6
  • Y. Haik, V. Pai, and C.J. Chen, Biomagnetic Fluid Dynamics at Interfaces, Cambridge University Press, Cambridge, 1999, pp. 439–452.
  • Y. Haik, V. Pai, and C.J. Chen, Apparent viscosity of human blood in a high static magnetic field, J. Magn. Magn. Mater. 225 (2001), pp. 180–186. doi: 10.1016/S0304-8853(00)01249-X
  • S.B. Hamed and M. Belhadri, Rheological properties of biopolymers drilling fluids, J. Pet. Sci. Eng. 67 (2009), pp. 84–90. doi: 10.1016/j.petrol.2009.04.001
  • Y. Kinouchi, H. Yamaguchi, and T.S. Tenforde, Theoretical analysis of magnetic field interactions with aortic blood flow, Bioelectromagnetics 17 (1996), pp. 21–32. doi: 10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8
  • D.N. Ku, Blood flow in arteries, Annu. Rev. Fluid Mech. 29 (1997), pp. 399–434. doi: 10.1146/annurev.fluid.29.1.399
  • N.T. Kuipers, C.L. Sauder, and C.A. Ray, Influence of static magnetic fields on pain perception and sympathetic nerve activity in humans, J. Appl. Physiol. 102 (2007), pp. 1410–1415. doi: 10.1152/japplphysiol.00734.2006
  • M.M. Lih, Transport Phenomena in Medicine and Biology, Wiley, Newyork, 1975.
  • G.-T. Liu, X.-J. Wang, B.-Q. Ai, and L.-G. Liy, Numerical study of pulsating flow through a tapered artery with stenosis, Chinese J. Phys. 42(4-I) (2004), pp. 401–409.
  • P.K. Mandal, An unsteady of non-Newtonian blood flow through tapered arteries with a stenosis, Int. J. Nonlin. Mech. 40 (2005), pp. 151–164. doi: 10.1016/j.ijnonlinmec.2004.07.007
  • P. Mathur and S. Jain, Pulsatile flow of blood through a stenosed tube: Effect of periodic body acceleration and a magnetic field, J. Biorheol. 25 (2011), pp. 71–77. doi: 10.1007/s12573-011-0040-5
  • J.C. McKay, F.S. Prato, and A.W. Thomas, A literature review: The effects of magnetic field exposure on blood flow and blood vessels in the microvasculature, Bioelectromagnetics 28 (2007), pp. 81–98. doi: 10.1002/bem.20284
  • Kh.S. Mekheimer and M.A.E.I. Kot, Influence of magnetic field and hall currents on blood flow through a stenotic artery, Appl. Math. Mech. Engl. Ed. 29(8) (2008), pp. 1093–1104. doi: 10.1007/s10483-008-0813-x
  • A. Nacev, C. Beni, O. Bruno, and B. Shapiro, The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields, J. Magn. Magn. Mater. 323 (2011), pp. 651–668. doi: 10.1016/j.jmmm.2010.09.008
  • R. Ponalagusamy, Blood flow through Stenosed tube, Ph.D Thesis, IIT, Bombay, India, 1986.
  • R. Ponalagusamy, Biological study on pulsatile flow of Herschel–Bulkley fluid in tapered blood vessels, in Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology-Algorithms and Software Tools (ISBN: 978-0-12-802508-6), Quocnam Tam Hamid Arbnia, eds., Elsevier Publishers, Boston, USA, 2015, pp. 39–51.
  • R. Ponalagusamy, R. Tamil Selvi, and A.K. Banerjee, Mathematical model of pulsatile flow of non-Newtonian fluids in tubes of varying cross sections and its implications to blood flow, J. Franklin Inst. 349 (2012), pp. 1681–1698. doi: 10.1016/j.jfranklin.2012.02.001
  • R. Ponnalagarsamy and M. Kawahara, A finite element analysis of laminar unsteady flows of viscoelastic fluids through channels with non-uniform cross-sections, Int. J. Numer. Methods Fluids 9 (1989), pp. 1487–1501. doi: 10.1002/fld.1650091205
  • S. Priyadharshini and R. Ponalagusamy, Biorheological model on flow of Herschel–Bulkley fluid through a tapered arterial stenosis with dilatation, Appl. Bionics. Biomech. (2015), doi:10.1155/2015/406195.
  • V.P. Rathod and S. Tanveer, Pulsatile flow of couple-stress fluid through a porous medium with periodic body acceleration and magnetic field, Bull. Malays. Math. Sci. Soc. 32 (2009), pp. 245–259.
  • M.K. Sharma, K. Bansal, and S. Bansal, Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field, Korea-Aust. Rheol. J. 24 (2012), pp. 181–189. doi: 10.1007/s13367-012-0022-1
  • S. Sharma, V.K. Katiyar, and U. Singh, Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field, J. Magn. Magn. Mater. 379 (2015), pp. 102–107. doi: 10.1016/j.jmmm.2014.12.012
  • J.B. Shukla, R.S. Parihar, and B.R.P. Rao, Effects of stenosis on non-Newtonian flow of blood in an artery, Bull. Math. Biol. 42 (1980), pp. 283–294. doi: 10.1007/BF02460787
  • W. Shyy and R. Narayanan, Fluid Dynamics at Interfaces, Cambridge University Press, Cambridge, 1999, pp. 446–447.
  • S.U. Siddiqui, N.K. Verma, S. Mishra, and R.S. Gupta, Mathematical modeling of pulsatile flow of Casson's fluid in arterial stenosis, Appl. Math. Comput. 210 (2009), pp. 1–10.
  • V.P. Srivastava and R. Rastogi, Blood flow through a stenosed catheterized artery: Effects of hematocrit and stenosis shape, Comput. Math. Appl. 59 (2010), pp. 1377–1385. doi: 10.1016/j.camwa.2009.12.007
  • V.K. Sud and G.S. Sekhon, Arterial flow under periodic body acceleration, Bull. Math. Biol. 47 (1985), pp. 35–52. doi: 10.1007/BF02459645
  • V.K. Sud and G.S. Sekhon, Analysis of blood through a model of the human arterial system under periodic body acceleration, J. Biomech. 19 (1986), pp. 929–941. doi: 10.1016/0021-9290(86)90188-0
  • C. Tu and M. Deville, Pulsatile flow of non-Newtonian fluids through arterial stenosis, J. Biomech. 29 (1996), pp. 899–908. doi: 10.1016/0021-9290(95)00151-4
  • G. Varshney, V.K. Katiyar, and S. Kumar, Effect of magnetic field on the blood flow in artery having multiple stenosis: A numerical study, Int. J. Eng. Sci. Tech. 2(2) (2010), pp. 67–82. doi: 10.4314/ijest.v2i2.59142
  • V.K. Verma, M.P. Singh, and V.K. Katiyar, Analytical study of blood flow through an artery with mild stenosis, Acta Cienc. Indica. 2(281) (2004). Vol.XXX M, pp. 281–284.
  • R.L. Whitmore, Rheology of the Circulation, Pergamon Press, Oxford, Newyork, 1968.
  • D.F. Young, Effects of a time-dependent stenosis on flow through a tube, J. Engg. Ind. Trans. ASME 90 (1968), pp. 248–254. doi: 10.1115/1.3604621
  • D.F. Young, Fluid mechanics of arterial stenoses, J. Biomech. Engg. Trans. ASME. 101 (1979), pp. 157–175. doi: 10.1115/1.3426241
  • D.F. Young and F.Y. Tsai, Flow Characteristic in models of arterial stenosis - I, Steady flow, J. Biomech. 6 (1973), pp. 395–410. doi: 10.1016/0021-9290(73)90099-7
  • A. Zaman and N. Ali, Effects of peripheral layer thickness on pulsatile flow of Herschel–Bulkley fluid through a stenotic artery, Canad. J. Phys. 94(9) (2016), pp. 920–928. doi: 10.1139/cjp-2014-0584
  • A. Zaman, N. Ali, O. Beg, and M. sajid, Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery, Int. J. Heat Mass Transf. 95 (2016), pp. 1084–1095. doi: 10.1016/j.ijheatmasstransfer.2015.12.073
  • A. Zaman, N. Ali, M. Sajid, and T. Hayat, Numerical and analytical study of two-layered unsteady blood flow through catheterized artery, PLoS ONE 11(8) (2016), p. e0161377. doi: 10.1371/journal.pone.0161377
  • A. Zaman, N. Ali, and M. Sajid, Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery, Math. Comput. Simul. (2016), Available at http://dx.doi.org/10.1016/j.matcom.2016.09.008.
  • A. Zaman, N. Ali, and M. Sajid, Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery, AIP Adv. 6 (2016), Available at http://dx.doi.org/10.1063/1.4941358.
  • A. Zaman, N. Ali, O. Beg, and M. Sajid, Unsteady two-layered blood flow through a ω-shaped stenosed artery using the generalized Oldroyd-B fluid model, ANZIAM J. 58(1) (2016), pp. 96–118. doi: 10.1017/S1446181116000134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.