262
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation for the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term

Pages 1957-1978 | Received 26 Feb 2018, Accepted 29 Oct 2018, Published online: 13 Nov 2018

References

  • S. Bhalekar and V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Cal. Appl. 1 (2011), pp. 1–9.
  • S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, and R. Magin, Fractional Bloch equation with delay, Comput. Math. Appl. 61 (2011), pp. 1355–1365. doi: 10.1016/j.camwa.2010.12.079
  • W. Bu, Y. Tang, and J. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys. 276 (2014), pp. 26–38. doi: 10.1016/j.jcp.2014.07.023
  • W. Bu, X. Liu, Y. Tang, and J. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Mode. Simul. Sci. Comput. 6(1) (2015), pp. 1540001.
  • V. Daftardar-Gejji, Y. Sukale, and S. Bhalekar, Solving fractional delay differential equations: A new approach, Fract. Calc. Appl. Anal. 18 (2015), pp. 400–418. doi: 10.1515/fca-2015-0026
  • K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal. 5 (1997), pp. 1–6.
  • K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), pp. 231–253. doi: 10.1023/A:1019147432240
  • K. Diethelm, N.J. Ford, and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam. 29 (2002), pp. 3–22. doi: 10.1023/A:1016592219341
  • Z. Ding, A. Xiao, and M. Li, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math. 233(8) (2010), pp. 1905–1914. doi: 10.1016/j.cam.2009.09.027
  • L.B. Feng, P. Zhuang, F. Liu, I. Turner, and J. Li, High-order numerical methods for the Riesz space fractional advection-dispersion equations, Comput. Math. Appl. (2016). Available at https://doi.org/10.1016/j.camwa.2016.01.015.
  • Z. Hao, K. Fan, W. Cao, and Z. Sun, A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Appl. Math. Comput. 275 (2016), pp. 238–254.
  • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 (2007), pp. 12–20.
  • F. Liu, S. Chen, I. Turner, K. Burrage, and V. Anh, Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys. 11(10) (2013), pp. 1221–1232.
  • F. Liu, P.H. Zhuang, and Q.X. Liu, Numerical Methods of Fractional Partial Differential Equations and Their Applications, Beijing Science Press, Beijing, 2015. (In Chinease).
  • R.L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng. 32(1) (2004), pp. 1–104. doi: 10.1615/CritRevBiomedEng.v32.10
  • Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl. 61 (2011), pp. 860–870. doi: 10.1016/j.camwa.2010.12.034
  • I. Petráš, Modeling and numerical analysis of fractional-order Bloch equations, Comput. Math. Appl. 61 (2011), pp. 341–356. doi: 10.1016/j.camwa.2010.11.009
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • M. Ran and Y. He, Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, Int. J. Comput. Math. 95(12) (2018), pp. 2458–2470. doi: 10.1080/00207160.2017.1398326
  • G.D. Simith, Numerical Partial Differential Equations: Finite Difference Methods, Oxford University Press, Oxford, 1978.
  • I.M. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Phys. Today 55(11) (2002), pp. 48–54. doi: 10.1063/1.1535007
  • H.H. Sun, B. Onaral, and Y. Tsao, Application of positive reality principle to metal electrode linear polarization phenomena, IEEE Trans. Biomed. Eng. BME-31(10) (1984), pp. 664–674. doi: 10.1109/TBME.1984.325317
  • H.H. Sun, A.A. Abdelwahab, and B. Onaral, Linear approximation of transfer function with a pole of fractional order, IEEE Trans. Automat. Contr. AC-29(5) (1984), pp. 441–444. doi: 10.1109/TAC.1984.1103551
  • W.Y. Tian, H. Zhou, and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84(294) (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • S. Vong and P. Lyu, Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional burgers-type equation, J. Sci. Comput. 76 (2018), pp. 1252–1273. doi: 10.1007/s10915-018-0659-0
  • D. Wang, A. Xiao, and W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242(242) (2013), pp. 670–681. doi: 10.1016/j.jcp.2013.02.037
  • D.L. Wang, A.G. Xiao, and W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys. 272 (2014), pp. 644–655. doi: 10.1016/j.jcp.2014.04.047
  • M. Zayernouri, W. Cao, Z. Zhang, and G.E. Karniadakis, Spectral and discontinuous spectral element methods for fractional delay equations, SIAM J. Sci. Comput. 36 (2014), pp. B904–B929. doi: 10.1137/130935884
  • X. Zhao, Z.Z. Sun, and Z.P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36(6) (2014), pp. A2865–A2886. doi: 10.1137/140961560
  • X. Zhao, Z. Sun, and G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys. 293 (2015), pp. 184–200. doi: 10.1016/j.jcp.2014.08.015
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank-Nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal. 52(6) (2014), pp. 2599–2622. doi: 10.1137/130934192
  • X. Zhu, Y. Nie, J. Wang, and Z. Yuan, A numerical approach for the Riesz space-fractional Fisher's equation in two-dimensions, Int. J. Comput. Math. 94(2) (2017), pp. 296–315. doi: 10.1080/00207160.2015.1105363
  • P. Zhuang, F. Liu, V. Anh, and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear reaction term, SIAM J. Numer. Anal. 47(3) (2009), pp. 1760–1781. doi: 10.1137/080730597

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.