243
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

High-order integral nodal discontinuous Gegenbauer-Galerkin method for solving viscous Burgers' equation

ORCID Icon & ORCID Icon
Pages 2039-2078 | Received 19 Jun 2018, Accepted 25 Oct 2018, Published online: 09 Dec 2018

References

  • S. Abbasbandy and M. Darvishi, A numerical solution of Burgers' equation by modified Adomian method, Appl. Math. Comput. 163 (2005), pp. 1265–1272.
  • I.P. Akpan, Adomian decomposition approach to the solution of the Burger's equation, Am. J. Comput. Math. 5 (2015), pp. 329. doi: 10.4236/ajcm.2015.53030
  • A. Al-Fhaid, A quasilinear and Chebyshev collocation method for solving nonlinear 1-D Burgers-type equations, J. Comput. Theor. Nanosci. 13 (2016), pp. 3112–3121. doi: 10.1166/jctn.2016.4964
  • G. Arora and V. Joshi, A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers' equation in one and two dimensions, Alexandria Eng. J. 57 (2017), pp. 1087–1098. doi: 10.1016/j.aej.2017.02.017
  • G. Arora and B.K. Singh, Numerical solution of Burgers' equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput. 224 (2013), pp. 166–177.
  • A. Asaithambi, Numerical solution of the Burgers' equation by automatic differentiation, Appl. Math. Comput. 216 (2010), pp. 2700–2708.
  • V.S. Aswin, A. Awasthi, and M.M. Rashidi, A differential quadrature based numerical method for highly accurate solutions of Burgers' equation, Numer. Methods. Partial. Differ. Equ. 33 (2017), pp. 2023–2042. doi: 10.1002/num.22178
  • Z.-Z. Bai, Y.-M. Huang, and M. Ng, On preconditioned iterative methods for Burgers equations, SIAM. J. Sci. Comput. 29 (2007), pp. 415–439. doi: 10.1137/060649124
  • Y. Belopolskaya, A probabilistic approach to a solution of nonlinear parabolic equations, Theory Probab. Appl. 49 (2005), pp. 589–611. doi: 10.1137/S0040585X97981287
  • J. Biazar, Z. Ayati, and S. Shahbazi, Solution of the Burgers equation by the method of lines, Am. J. Numer. Anal. 2 (2014), pp. 1–3.
  • N. Bildik and A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci. Numer. Simul. 7 (2006), pp. 65–70. doi: 10.1515/IJNSNS.2006.7.1.65
  • R. Camphouse, S.M. Djouadi, and J.H. Myatt, Feedback control for aerodynamics, preprint (2006). Tech. Rep. DTIC Document.
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
  • O. Chakrone, O. Diyer, and D. Sbibih, Numerical solution of Burger's equation based on cubic B-splines quasi-interpolants and matrix arguments, Bol. Soc. Parana. Mat. 33 (2015), pp. 109–119. doi: 10.5269/bspm.v33i2.21544
  • H.N. Chan and E.T. Chung, A staggered discontinuous Galerkin method with local TV regularization for the Burgers equation, Numer. Math. Theory Methods Appl. 8 (2015), pp. 451–474. doi: 10.4208/nmtma.2015.m1238
  • A. Cordero, A. Franques, and J. Torregrosa, Numerical solution of turbulence problems by solving Burger' equation, Algorithms 8 (2015), pp. 224–233. doi: 10.3390/a8020224
  • E.A. Coutsias, T. Hagstrom, and D. Torres, An efficient spectral method for ordinary differential equations with rational function coefficients, Math. Comput. 65 (1996), pp. 611–635. doi: 10.1090/S0025-5718-96-00704-1
  • M. Dehghan and M. Abbaszadeh, The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations, Alexandria Eng. J. 57 (2017), pp. 1137–1156. doi: 10.1016/j.aej.2017.02.024
  • M. Dehghan and M. Abbaszadeh, Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions, Comput. Appl. Math. 37 (2018), pp. 3869–3905. doi: 10.1007/s40314-017-0546-6
  • G. Di Labbio, C. Kiyanda, X. Mi, A. Higgins, N. Nikiforakis, and H. Ng, Investigation of detonation velocity in heterogeneous explosive system using the reactive Burgers' analog, in AIP Conference Proceedings, Vol. 1738, AIP Publishing, 2016, p. 030011.
  • W. Domańki, The complex Burgers equation as a model for collinear interactions of weakly nonlinear shear plane waves in anisotropic elastic materials, J. Eng. Math. 95 (2015), pp. 267–278. doi: 10.1007/s10665-014-9723-4
  • T.A. Driscoll, Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations, J. Comput. Phys. 229 (2010), pp. 5980–5998. doi: 10.1016/j.jcp.2010.04.029
  • S. El-Gendi, Chebyshev solution of differential, integral and integro-differential equations, Comput. J. 12 (1969), pp. 282–287. doi: 10.1093/comjnl/12.3.282
  • E.M.E. Elbarbary, Integration preconditioning matrix for ultraspherical pseudospectral operators, SIAM. J. Sci. Comput. 28 (2006), pp. 1186–1201. doi: 10.1137/050630982
  • K. Elgindy, Generation of higher order pseudospectral integration matrices, Appl. Math. Comput. 209 (2009), pp. 153–161.
  • K. Elgindy, Gegenbauer collocation integration methods: Advances in computational optimal control theory, Ph.D. thesis, School of Mathematical Sciences, Faculty of Science, Monash University, Australia–Victoria, 2013.
  • K.T. Elgindy, High-order numerical solution of second-order one-dimensional hyperbolic telegraph equation using a shifted Gegenbauer pseudospectral method, Numer. Methods. Partial. Differ. Equ. 32 (2016), pp. 307–349. doi: 10.1002/num.21996
  • K.T. Elgindy, High-order adaptive Gegenbauer integral spectral element method for solving non-linear optimal control problems, Optimization 66 (2017), pp. 811–836. doi: 10.1080/02331934.2017.1298597
  • K.T. Elgindy, High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures, Appl. Numer. Math. 113 (2017), pp. 1–25. doi: 10.1016/j.apnum.2016.10.014
  • K.T. Elgindy, Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted Gegenbauer integral pseudospectral method, J. Ind. Manag. Optim. 14 (2017), pp. 473–496.
  • K.T. Elgindy, Optimization via Chebyshev polynomials, J. Appl. Math. Comput. 56 (2018), pp. 317–349. doi: 10.1007/s12190-016-1076-x
  • K.T. Elgindy and S.D. Gaad, High-order numerical solution of Burgers' equation using a Cole-Hopf barycentric Gegenbauer pseudospectral method, Math. Methods. Appl. Sci. ( in press).
  • K.T. Elgindy and H.M. Refat, High-order shifted Gegenbauer integral pseudo-spectral method for solving differential equations of Lane-Emden type, Appl. Numer. Math. 128 (2018), pp. 98–124. doi: 10.1016/j.apnum.2018.01.018
  • K.T. Elgindy and K. Smith-Miles, Fast, accurate, and small-scale direct trajectory optimization using a Gegenbauer transcription method, J. Comput. Appl. Math. 251 (2013), pp. 93–116. doi: 10.1016/j.cam.2013.03.032
  • K.T. Elgindy and K.A. Smith-Miles, Optimal Gegenbauer quadrature over arbitrary integration nodes, J. Comput. Appl. Math. 242 (2013), pp. 82–106. doi: 10.1016/j.cam.2012.10.020
  • K.T. Elgindy and K.A. Smith-Miles, Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices, J. Comput. Appl. Math. 237 (2013), pp. 307–325. doi: 10.1016/j.cam.2012.05.024
  • C.C. Françolin, D.A. Benson, W.W. Hager, and A.V. Rao, Costate approximation in optimal control using integral Gaussian quadrature orthogonal collocation methods, Optimal Control Appl. Methods 36 (2015), pp. 381–397. doi: 10.1002/oca.2112
  • D. Funaro, A preconditioning matrix for the Chebyshev differencing operator, SIAM. J. Numer. Anal. 24 (1987), pp. 1024–1031. doi: 10.1137/0724067
  • I.A. Ganaie and V. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Appl. Math. Comput. 237 (2014), pp. 571–581.
  • B. Geurts, R. Van Buuren, and H. Lu, Application of polynomial preconditioners to conservation laws, J. Eng. Math. 38 (2000), pp. 403–426. doi: 10.1023/A:1004836400044
  • L. Greengard, Spectral integration and two-point boundary value problems, SIAM J. Numer. Anal. 28 (1991), pp. 1071–1080. doi: 10.1137/0728057
  • Y. Guo, Y.-F. Shi, and Y.-M. Li, A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers' equation, Appl. Math. Comput. 281 (2016), pp. 172–185.
  • F.A. Hendi, B.S. Kashkari, and A.A. Alderremy, The variational homotopy perturbation method for solving dimensional Burgers' equations, J. Appl. Math. 2016 (2016), pp. 4146323. doi: 10.1155/2016/4146323
  • J.S. Hesthaven, Integration preconditioning of pseudospectral operators. I. Basic linear operators, SIAM. J. Numer. Anal. 35 (1998), pp. 1571–1593. doi: 10.1137/S0036142997319182
  • N.J. Higham, Accuracy and Stability of Numerical Algorithms, Vol. 80, SIAM, Philadelphia, PA, 2002.
  • N.J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal. 24 (2004), pp. 547–556. doi: 10.1093/imanum/24.4.547
  • M. Hossen, S. Ema, and A. Mamun, Nonlinear dynamics in a nonextensive complex plasma with viscous electron fluids, Chinese Phys. Lett. 33 (2016), pp. 065203. doi: 10.1088/0256-307X/33/6/065203
  • X. Hu, P. Huang, and X. Feng, A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation, Appl. Math. 61 (2016), pp. 27–45. doi: 10.1007/s10492-016-0120-3
  • R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation, Comput. Phys. Commun. 183 (2012), pp. 2413–2423. doi: 10.1016/j.cpc.2012.06.009
  • R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burgers' equation, Comput. Phys. Commun. 188 (2015), pp. 59–67. doi: 10.1016/j.cpc.2014.11.004
  • R. Jiwari, R. Mittal, and K.K. Sharma, A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers' equation, Appl. Math. Comput. 219 (2013), pp. 6680–6691.
  • B. Karasözen and F. Yılmaz, Optimal boundary control of the unsteady Burgers equation with simultaneous space-time discretization, Optimal Control Appl. Methods 35 (2014), pp. 423–434. doi: 10.1002/oca.2079
  • D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer Science & Business Media, 2009.
  • A. Korkmaz and I. Dağ, Polynomial based differential quadrature method for numerical solution of nonlinear Burgers' equation, J. Franklin Inst. 348 (2011), pp. 2863–2875. doi: 10.1016/j.jfranklin.2011.09.008
  • B. Kumar and M. Mehra, Wavelet based preconditioners for sparse linear systems, Appl. Math. Comput. 171 (2005), pp. 203–224.
  • R. Mittal and R. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method, Appl. Math. Comput. 218 (2012), pp. 7839–7855.
  • R. Mittal and R. Jiwari, A differential quadrature method for numerical solutions of Burgers'-type equations, Int. J. Numer. Methods Heat Fluid Flow 22 (2012), pp. 880–895. doi: 10.1108/09615531211255761
  • V. Mukundan and A. Awasthi, Efficient numerical techniques for Burgers' equation, Appl. Math. Comput. 262 (2015), pp. 282–297.
  • V. Mukundan and A. Awasthi, Linearized implicit numerical method for Burgers' equation, Nonlinear Eng. 5 (2016), pp. 219–234. doi: 10.1515/nleng-2016-0031
  • H. Nojavan, S. Abbasbandy, and T. Allahviranloo, Variable shape parameter strategy in local radial basis functions collocation method for solving the 2D nonlinear coupled Burgers' equations, Mathematics 5 (2017), pp. 38. doi: 10.3390/math5030038
  • S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev. 55 (2013), pp. 462–489. doi: 10.1137/120865458
  • S.A. Orszag and D. Gottlieb, High resolution spectral calculations of inviscid compressible flows, in Approximation Methods for Navier-Stokes Problems, Springer, Berlin, 1980, pp. 381–398.
  • K. Rahman, N. Helil, and R. Yimin, Some new semi-implicit finite difference schemes for numerical solution of Burgers equation, 2010 International Conference on Computer Application and System Modeling (ICCASM), Vol. 14, IEEE, 2010, pp. V14–451.
  • A. Rashid, M. Abbas, A.I.M. Ismail, and A.A. Majid, Numerical solution of the coupled viscous Burgers equations by Chebyshev–Legendre pseudo-spectral method, Appl. Math. Comput. 245 (2014), pp. 372–381.
  • K.R. Raslan, A collocation solution for Burgers equation using quadratic B-spline finite elements, Int. J. Comput. Math. 80 (2003), pp. 931–938. doi: 10.1080/0020716031000079554
  • S. Saha Ray and A. Gupta, Application of novel schemes based on Haar wavelet collocation method for Burger and Boussinesq-Burger equations, Appl. Math. Inform. Sci. 10 (2016), pp. 1513–1524. doi: 10.18576/amis/100429
  • M. Sarbol and A. Aminataei, An efficient numerical scheme for coupled nonlinear Burgers' equations, Appl. Math. Inform. Sci. 9 (2015), pp. 245–255. doi: 10.12785/amis/090130
  • M. Sari and G. Gürarslan, A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation, Appl. Math. Comput. 208 (2009), pp. 475–483.
  • L. Shao, X. Feng, and Y. He, The local discontinuous Galerkin finite element method for Burger's equation, Math. Comput. Model. 54 (2011), pp. 2943–2954. doi: 10.1016/j.mcm.2011.07.016
  • J. Shen, F. Wang, and J. Xu, A finite element multigrid preconditioner for Chebyshev–collocation methods, Appl. Numer. Math. 33 (2000), pp. 471–477. doi: 10.1016/S0168-9274(99)00114-2
  • J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Texts in Applied Mathematics Vol. 12, Springer-Verlag, New York, 2002.
  • D.-H. Sun, G. Zhang, W.-N. Liu, M. Zhao, S.-L. Cheng, and T. Zhou, Effect of explicit lane changing in traffic lattice hydrodynamic model with interruption, Nonlinear. Dyn. 86 (2016), pp. 269–282. doi: 10.1007/s11071-016-2888-9
  • A.H.A. Tabatabaei, E. Shakour, and M. Dehghan, Some implicit methods for the numerical solution of Burgers' equation, Appl. Math. Comput. 191 (2007), pp. 560–570.
  • B. Talbot, Y. Mammeri, and N. Bedjaoui, Viscous shock anomaly in a variable-viscosity Burgers flow with an active scalar, Fluid. Dyn. Res. 47 (2015), pp. 065502. doi: 10.1088/0169-5983/47/6/065502
  • M. Tamsir, V. Srivastava, and R. Jiwari, An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers' equation, Appl. Math. Comput. 290 (2016), pp. 111–124.
  • X. Tang, Efficient and stable generation of higher-order pseudospectral integration matrices, Appl. Math. Comput. 261 (2015), pp. 60–67.
  • L.N. Trefethen, Lax-stability vs. eigenvalue stability of spectral methods, in Numerical Methods for Fluid Dynamics III, England, United Kingdom, Oxford, 1988, pp. 237–253.
  • L.N. Trefethen and M.R. Trummer, An instability phenomenon in spectral methods, SIAM. J. Numer. Anal. 24 (1987), pp. 1008–1023. doi: 10.1137/0724066
  • M. Uzunca, B. Karasözen, and T. Küçükseyhan, Moving mesh discontinuous Galerkin methods for PDEs with traveling waves, Appl. Math. Comput. 292 (2017), pp. 9–18.
  • S. Venkatesh, S. Ayyaswamy, and S.R. Balachandar, An approximation method for solving Burgers' equation using Legendre wavelets, Proc. Nat. Acad. Sci. India Sect. A Phys. Sci. 87 (2017), pp. 257–266. doi: 10.1007/s40010-016-0326-5
  • D. Viswanath, Spectral integration of linear boundary value problems, J. Comput. Appl. Math. 290 (2015), pp. 159–173. doi: 10.1016/j.cam.2015.04.043
  • J. Xin and J. Flaherty, Implicit time integration of hyperbolic conservation laws via discontinuous Galerkin methods, Int. J. Numer. Method. Biomed. Eng. 27 (2011), pp. 711–721. doi: 10.1002/cnm.1326

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.