75
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A full multigrid method for the Steklov eigenvalue problem

Pages 2371-2386 | Received 24 Oct 2017, Accepted 10 Nov 2018, Published online: 31 Dec 2018

References

  • R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  • H.J. Ahn, Vibration of a pendulum consisting of a bob suspended from a wire, Quart. Appl. Math. 39 (1981), pp. 109–117. doi: 10.1090/qam/613954
  • A. Andreev and T. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal. 24 (2004), pp. 309–322. doi: 10.1093/imanum/24.2.309
  • M. Armentano, The effect of reduced integration in the Steklov eigenvalue problem, Math. Model. Numer. Anal. 38 (2004), pp. 27–36. doi: 10.1051/m2an:2004002
  • M.G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem, Appl. Numer. Math. 58 (2008), pp. 593–601. doi: 10.1016/j.apnum.2007.01.011
  • S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.
  • A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid–solid vibrations, Numer. Math. 87 (2000), pp. 201–227. doi: 10.1007/s002110000175
  • H. Bi and Y. Yang, A two-grid method of the non-conforming Crouzeix–Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput. 217 (2011), pp. 9669–9678.
  • H. Bi and Y. Yang, Multiscale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem, Math. Probl. Eng. 2012 (2012), pp. 539–551. doi: 10.1155/2012/487207
  • J.H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics, Vol. 294, John Wiley and Sons, Harlow, 1993.
  • J.H. Bramble and J.E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comput. 49 (1987), pp. 311–329. doi: 10.1090/S0025-5718-1987-0906174-X
  • J.H. Bramble and X. Zhang, The analysis of multigrid methods, in Handbook of Numerical Analysis, Vol. 7, 2000, pp. 173–415.
  • A. Brandt, S. McCormick and J. Ruge, Multigrid methods for differential eigenproblems, SIAM J. Sci. Stat. Comput. 4(2) (1983), pp. 244–260. doi: 10.1137/0904019
  • S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
  • F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, New York, 1983.
  • P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam, 1978.
  • C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, Vol. 38, Wiley, Chichester, 1995.
  • E.M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Numer. Anal. 1(3) (2011), pp. 914–946. doi: 10.1093/imanum/drp055
  • P. Grisvard, Singularities in Boundary Value Problems, MASSON and Springer-Verlag, Paris, 1985.
  • W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin, 1985.
  • H. Han and Z. Guan, An Analysis of the Boundary Element Approximation of Steklov Eigenvalue Problems. Numerical Methods for Partial Differential Equations, World Scientific, Singapore, 1994, pp. 35–51.
  • H. Han, Z. Guan and B. He, Boundary element approximation of Steklov eigenvalue problem, J. Chin. Univ. Appl. Math. Ser. A 9 (1994), pp. 231–238. doi: 10.1007/BF02663772
  • X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods, Numer. Math. Theor. Methods Appl. 8(3) (2015), pp. 383–405. doi: 10.4208/nmtma.2015.m1334
  • J. Huang and T. Lü, The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems, J. Comput. Math. 22 (2004), pp. 719–726.
  • Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math. 58(2) (2013), pp. 129–151. doi: 10.1007/s10492-013-0007-5
  • Q. Lin and H. Xie, A Multilevel Correction Type of Adaptive Finite Element Method for Steklov Eigenvalue Problems, Proceedings of the International Conference Applications of Mathematics, 2012, pp. 134–143.
  • Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comput. 84 (2015), pp. 71–88. doi: 10.1090/S0025-5718-2014-02825-1
  • V. Shaidurov, Multigrid Methods for Finite Elements, Springer, Boston, 1995.
  • J. Sun, X. Chi, J. Cao and L. Zhang, Parallel algorithm design on some distributed systems, J. Comput. Sci. Technol. 12(2) (1997), pp. 97–104. doi: 10.1007/BF02951328
  • W. Tang, Z. Guan and H. Han, Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation, J. Comput. Math. 2 (1998), pp. 165–178.
  • U. Trottenberg and A. Schuller, Multigrid, Academic Press, New York, 2015.
  • H. Xie, A multigrid method for eigenvalue problem, J. Comput. Phys. 274 (2014), pp. 550–561. doi: 10.1016/j.jcp.2014.06.030
  • H. Xie, A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal. 34(2) (2014), pp. 592–608. doi: 10.1093/imanum/drt009
  • J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34(4) (1992), pp. 581–613. doi: 10.1137/1034116
  • J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput. 70(233) (2001), pp. 17–25. doi: 10.1090/S0025-5718-99-01180-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.