274
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schrödinger equations

&
Pages 2387-2410 | Received 13 Jun 2018, Accepted 19 Dec 2018, Published online: 06 Jan 2019

References

  • G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal. 13 (1993), pp. 115–124. doi: 10.1093/imanum/13.1.115
  • E.P. Bashkin and A.V. Vagov, Instability and stratification of a two-component Bose-Einstein condensate in a trapped ultracold gas, Phys. Rev. B 56 (1998), pp. 6207–6212. doi: 10.1103/PhysRevB.56.6207
  • J. Cai, Multisymplectic schemes for strongly coupled schrödinger system, Appl. Math. Comput. 216 (2010), pp. 2417–2429.
  • M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys. 53 (2012), p. 043507.
  • S. Duo and Y. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl. 71 (2016), pp. 2257–2271. doi: 10.1016/j.camwa.2015.12.042
  • K. Dysthe, H.E. Krogstad, and P. Müller, Oceanic rogue waves, Annu. Rev. Fluid Mech. 40 (2008), pp. 287–310. doi: 10.1146/annurev.fluid.40.111406.102203
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), pp. 558–576. doi: 10.1002/num.20112
  • V.J. Ervin and J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Methods Partial Differential Equations 23 (2007), pp. 256–281. doi: 10.1002/num.20169
  • Z. Fei, V.M. Pérez-García, and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme, Appl. Math. Comput. 71 (1995), pp. 165–177.
  • B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear schrödinger equation, Comm. Partial Differential Equations 36 (2010), pp. 247–255. doi: 10.1080/03605302.2010.503769
  • H. Hajaiej, X. Yu, and Z. Zhai, Fractional Gagliardo–Nirenberg and hardy inequalities under Lorentz norms, J. Math. Anal. Appl. 396 (2012), pp. 569–577. doi: 10.1016/j.jmaa.2012.06.054
  • K. Kirkpatrick, E. Lenzmann, and G. Staffilani, On the continuum limit for discrete nls with long-range lattice interactions, Comm. Math. Phys. 317 (2013), pp. 563–591. doi: 10.1007/s00220-012-1621-x
  • N. Laskin, Fractional quantum mechanics, Phys. Rev. E. 62 (2000), p. 3135–3145. doi: 10.1103/PhysRevE.62.3135
  • N. Laskin, Fractional quantum mechanics and lévy path integrals, Phys. Lett. A. 268 (2000), pp. 298–305. doi: 10.1016/S0375-9601(00)00201-2
  • N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66 (2002), p. 056108. doi: 10.1103/PhysRevE.66.056108
  • N. Lazarides and G. Tsironis, Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials, Phys. Rev. E 71 (2005), p. 036614.
  • S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation, SIAM J. Numer. Anal. 32 (1995), pp. 1839–1875. doi: 10.1137/0732083
  • M. Li, C. Huang, and P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms 74 (2017), pp. 499–525. doi: 10.1007/s11075-016-0160-5
  • M. Li, X.M. Gu, C. Huang, M. Fei, and G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys. 358 (2018), pp. 256–282. doi: 10.1016/j.jcp.2017.12.044
  • X. Liang, A. Khaliq, H. Bhatt, and K.M. Furati, The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations, Numer. Algorithms 76 (2017), pp. 939–958. doi: 10.1007/s11075-017-0291-3
  • Q. Liu, F. Zeng, and C. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math. 92 (2015), pp. 1439–1451. doi: 10.1080/00207160.2014.945440
  • Z. Mao and J. Shen, Efficient spectral–Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys. 307 (2016), pp. 243–261. doi: 10.1016/j.jcp.2015.11.047
  • Z. Mao, S. Chen, and J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations, Appl. Numer. Math. 106 (2016), pp. 165–181. doi: 10.1016/j.apnum.2016.04.002
  • M. Ran and C. Zhang, A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci. Numer. Simul. 41 (2016), pp. 64–83. doi: 10.1016/j.cnsns.2016.04.026
  • J.P. Roop, Variational solution of the fractional advection dispersion equation, Ph.D. diss., Clemson University, 2004.
  • S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in RN, J. Math. Phys. 54 (2013), p. 031501. doi: 10.1063/1.4793990
  • S. Secchi and M. Squassina, Soliton dynamics for fractional Schrödinger equations, Appl. Anal. 93(8) (2014), pp. 1702–1729. doi: 10.1080/00036811.2013.844793
  • J. Shen, T. Tang, and L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, Heidelberg, 2011.
  • F. Song and C. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys. 299 (2015), pp. 196–214. doi: 10.1016/j.jcp.2015.07.011
  • C. Sulem and P.L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Vol. 139, Springer-Verlag, New York, 1999.
  • J.Q. Sun, X.Y. Gu, and Z.Q. Ma, Numerical study of the soliton waves of the coupled nonlinear Schrödinger system, Phys. D 196 (2004), pp. 311–328. doi: 10.1016/j.physd.2004.05.010
  • P. Wang and C. Huang, A conservative linearized difference scheme for the nonlinear fractional Schrödinger equations, Numer. Algorithms 69 (2015), pp. 625–641. doi: 10.1007/s11075-014-9917-x
  • P. Wang and C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys. 293 (2015), pp. 238–251. doi: 10.1016/j.jcp.2014.03.037
  • P. Wang and C. Huang, Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions, Comput. Math. Appl. 71 (2016), pp. 1114–1128. doi: 10.1016/j.camwa.2016.01.022
  • H. Wang and X. Zhang, A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations, J. Comput. Phys. 281 (2015), pp. 67–81. doi: 10.1016/j.jcp.2014.10.018
  • D. Wang, A. Xiao, and W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013), pp. 670–681. doi: 10.1016/j.jcp.2013.02.037
  • D. Wang, A. Xiao, and W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys. 272 (2014), pp. 644–655. doi: 10.1016/j.jcp.2014.04.047
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal. 52 (2014), pp. 2599–2622. doi: 10.1137/130934192
  • H. Zhang, X. Jiang, C. Wang, and S. Chen, Crank–Nicolson Fourier spectral methods for the space fractional nonlinear Schrödinger equation and its parameter estimation, Int. J. Comput. Math. (2018). Available at https://doi.org/10.1080/00207160.2018.1434515.
  • X. Zhao, Z. Sun, and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36 (2014), pp. A2865–A2886. doi: 10.1137/140961560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.