196
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Breather, lump, shock and travelling-wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics and plasma physics

, , , , , & show all
Pages 1130-1145 | Received 03 Mar 2020, Accepted 28 Jul 2020, Published online: 27 Aug 2020

References

  • H.I. Abdel-Gawad, M. Tantawy, M. Inc, and A. Yusuf, On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis, Mod. Phys. Lett. B 32(29) (2018), pp. 1850353. doi: 10.1142/S0217984918503530
  • T. Ak and S. Dhawan, A practical and powerful approach to potential KdV and Benjamin equations, Beni-Suef Univ. J. Basic Appl. Sci. 6(4) (2017), pp. 383–390. doi: 10.1016/j.bjbas.2017.07.008
  • A. Biswas and H. Triki, 1-Soliton solution of the Klein-gordon-Schrödinger's equation with power law nonlinearity, Appl. Math. Comput. 217(8) (2010), pp. 3869–3874.
  • H. Bulut, T.A. Sulaiman, and H.M. Baskonus, On the new soliton and optical wave structures to some nonlinear evolution equations, Eur. Phys. J. Plus 132(11) (2017), pp. 459. doi: 10.1140/epjp/i2017-11738-7
  • E.J. Chichilnisky, A simple white noise analysis of neuronal light responses, Netw. Comp. Neural 12(2) (2001), pp. 199–213. doi: 10.1080/713663221
  • G.F. Deng, Y.T. Gao, J.J. Su, and C.C. Ding, Multi-breather wave solutions for a generalized (31)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid, Appl. Math. Lett. 98 (2019), pp. 177–183. doi: 10.1016/j.aml.2019.05.037
  • G.F. Deng, Y.T. Gao, J.J. Su, C.C. Ding, and T.T. Jia, Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics, Nonlinear Dyn. 99(2) (2020), pp. 1039–1052. doi: 10.1007/s11071-019-05328-4
  • C.C. Ding, Y.T. Gao, and G.F. Deng, Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves, Nonlinear Dyn. 97(4) (2019), pp. 2023–2040. doi: 10.1007/s11071-019-05093-4
  • C.C. Ding, Y.T. Gao, and L.Q. Li, Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma, Chaos Solit. Fract. 120 (2019), pp. 259–265. doi: 10.1016/j.chaos.2019.01.007
  • A.A. Dubkov and B. Spagnolo, Verhulst model with Lévy white noise excitation, Eur. Phys. J. B 65(3) (2008), pp. 361–367. doi: 10.1140/epjb/e2008-00337-0
  • G. Falci, A. La Cognata, M. Berrittaet al., Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B 87(21) (2013), pp. 214515. doi: 10.1103/PhysRevB.87.214515
  • Y.J. Feng, Y.T. Gao, L.Q. Li, and T.T. Jia, Bilinear form and solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves, Appl. Anal., in press (2020), doi:10.1080/00036811.2019.1652734.
  • Y.J. Feng, Y.T. Gao, T.T. Jia, and L.Q. Li, Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows, Mod. Phys. Lett. B 33(29) (2019), pp. 1950354. doi: 10.1142/S0217984919503548
  • L.N. Gao, Y.Y. Zi, Y.H. Yin, W.X. Ma, and X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn. 89(3) (2017), pp. 2233–2240. doi: 10.1007/s11071-017-3581-3
  • X.Y. Gao, Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett. 91 (2019), pp. 165–172. doi: 10.1016/j.aml.2018.11.020
  • X.Y. Gao, Y.J. Guo, and W.R. Shan, Water-wave symbolic computation for the earth, enceladus and titan: the higher-order Boussinesq-burgers system, auto- and non-auto-bäcklund transformations, Appl. Math. Lett. 104 (2020), pp. 106170. doi: 10.1016/j.aml.2019.106170
  • X.Y. Gao, Y.J. Guo, W.R. Shan, Y.Q. Yuan, C.R. Zhang, and S.S. Chen, Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and N solitons for a generalized (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 111 (2021), pp. 106627.
  • X. Guan, W. Liu, Q. Zhou, and A. Biswas, Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Comput. 366 (2020), pp. 124757.
  • B. Guo, L. Ling, and Q.P. Liu, Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85(2) (2012), pp. 026607. doi: 10.1103/PhysRevE.85.026607
  • R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14(7) (1973), pp. 805–809. doi: 10.1063/1.1666399
  • W.Q. Hu, Y.T. Gao, C. Zhao, S.L. Jia, and Z.Z. Lan, Breathers, quasi-periodic and travelling waves for a generalized-dimensional Yu-Toda-Sasa-Fukayama equation in fluids, Waves Random Complex 27(3) (2017), pp. 458–481. doi: 10.1080/17455030.2016.1262975
  • L. Hu, Y.T. Gao, S.L. Jia, J.J. Su, and G.F. Deng, Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique, Mod. Phys. Lett. B 33(30) (2019), pp. 1950376. doi: 10.1142/S0217984919503767
  • M. Inc, H.I. Abdel-Gawad, M. Tantawy, and A. Yusuf, On multiple soliton similariton-pair solutions, conservation laws via multiplier and stability analysis for the Whitham-Broer-Kaup equations in weakly dispersive media, Math. Method. Appl. Sci. 42(7) (2019), pp. 2455–2464. doi: 10.1002/mma.5521
  • T.T. Jia, Y.T. Gao, G.F. Deng, and L. Hu, Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons, Nonlinear Dyn. 98(1) (2019), pp. 269–282. doi: 10.1007/s11071-019-05188-y
  • T.T. Jia, Y.T. Gao, Y.J. Feng, L. Hu, J.J. Su, L.Q. Li, and C.C. Ding, On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics, Nonlinear Dyn. 96(1) (2019), pp. 229–241. doi: 10.1007/s11071-019-04786-0
  • Z. Korpinar, M. Inc, M. Bayram, and M.S. Hashemi, New optical solitons for Biswas-arshed equation with higher order dispersions and full nonlinearity, Optik 206 (2019), pp. 163332.
  • Z. Korpinar, M. Inc, and M. Bayram, Some new exact solutions for derivative nonlinear Schrödinger equation with the quintic non-Kerr nonlinearity, Mod. Phys. Lett. B 34 (2020), pp. 2050079. doi: 10.1142/S0217984920500797
  • Z. Korpinar, M. Inc, and M. Bayram, Theory and application for the system of fractional Burger equations with Mittag leffler kernel, Appl. Math. Comput. 367 (2020), pp. 124781.
  • M. Kumar and A.K. Tiwari, Soliton solutions of BLMP equation by Lie symmetry approach, Comput. Math. Appl. 75(4) (2018), pp. 1434–1442. doi: 10.1016/j.camwa.2017.11.018
  • Z. Lan, Periodic, breather and rogue wave solutions for a generalized (3+ 1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett. 94 (2019), pp. 126–132. doi: 10.1016/j.aml.2018.12.005
  • Z.Z. Lan and J.J. Su, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system, Nonlinear Dyn. 96(4) (2019), pp. 2535–2546. doi: 10.1007/s11071-019-04939-1
  • Z.Z. Lan, W.Q. Hu, and B.L. Guo, General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation, Appl. Math. Model. 73 (2019), pp. 695–714. doi: 10.1016/j.apm.2019.04.013
  • J.G. Liu, Z.F. Zeng, Y. He, and G.P. Ai, A class of exact solution of (3+1)-dimensional generalized shallow water equation system, Int. J. Nonlin. Sci. Num. 16(1) (2015), pp. 43–48. doi: 10.1515/ijnsns-2013-0114
  • J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Electron. 48(2) (2016), pp. 116. doi: 10.1007/s11082-016-0371-y
  • B. Spagnolo, C. Guarcello, L. Magazzù, A. Carollo, D. Persano Adorno, and D. Valenti, Nonlinear relaxation phenomena in metastable condensed matter systems, Entropy 19(1) (2017), pp. 20. doi: 10.3390/e19010020
  • B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D.P. Adorno, S. Spezia, and B. Di Paola, Noise-induced effects in nonlinear relaxation of condensed matter systems, Chaos Solit. Fract. 81 (2015), pp. 412–424. doi: 10.1016/j.chaos.2015.07.023
  • J.J. Su, Y.T. Gao, G.F. Deng, and T.T. Jia, Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow, Phys. Rev. E 100(4) (2019), pp. 042210. doi: 10.1103/PhysRevE.100.042210
  • J.J. Su, Y.T. Gao, and C.C. Ding, Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows, Appl. Math. Lett. 88 (2019), pp. 201–208. doi: 10.1016/j.aml.2018.08.022
  • X.Y. Tang and S.Y. Lou, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems, J. Math. Phys. 44(9) (2003), pp. 4000–4025. doi: 10.1063/1.1598619
  • F. Tchier, I.E. Inan, Y. Ugurlu, M. Inc, and D. Baleanu, On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations, J. Nonlinear Sci. Appl. 9(7) (2016), pp. 5029–5040. doi: 10.22436/jnsa.009.07.07
  • V.O. Vakhnenko and E.J. Parkes, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos Solit. Fract. 13(9) (2002), pp. 1819–1826. doi: 10.1016/S0960-0779(01)00200-4
  • D. Valenti, C. Guarcello, and B. Spagnolo, Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources, Phys. Rev. B 89(21) (2014), pp. 214510. doi: 10.1103/PhysRevB.89.214510
  • D. Valenti, L. Magazzù, P. Caldara, and B. Spagnolo, Stabilization of quantum metastable states by dissipation, Phys. Rev. B 91(23) (2015), pp. 235412. doi: 10.1103/PhysRevB.91.235412
  • Y. Xie, Exact solutions of the Wick-type stochastic Kadomtsev-Petviashvili equations, Chaos Solit. Fract. 21(2) (2004), pp. 473–480. doi: 10.1016/j.chaos.2003.12.058
  • A.M. Wazwaz, Multiple-soliton solutions for extended (3+1)-dimensional Jimbo-Miwa equations, Appl. Math. Lett. 64 (2017), pp. 21–26. doi: 10.1016/j.aml.2016.08.005
  • A.M. Wazwaz, Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirotas method, tanh-coth method and exp-function method, Appl. Math. Comput. 202(1) (2008), pp. 275–286.
  • A.M. Wazwaz and S.A. El-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method, Nonlinear Dyn. 88(4) (2017), pp. 3017–3021. doi: 10.1007/s11071-017-3429-x
  • C.M. Wei, Z.Q. Xia, and N.S. Tian, Exact solutions to generalized Wick-type stochastic Kadomtsev-Petviashvili equation, Chaos Solit. Fract. 29(5) (2006), pp. 1178–1187. doi: 10.1016/j.chaos.2005.08.088
  • H.M. Yin, B. Tian, X.C. Zhao, C.R. Zhang, and C.C. Hu, Breather-like solitons, rogue waves, quasi-periodic/chaotic states for the surface elevation of water waves, Nonlinear Dyn. 97(1) (2019), pp. 21–31. doi: 10.1007/s11071-019-04904-y
  • D. Yu, M. Small, R.G. Harrison, and C. Diks, Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data, Phys. Rev. E 61(4) (2000), pp. 3750. doi: 10.1103/PhysRevE.61.3750
  • Y.Q. Yuan, B. Tian, L. Liu, H.P. Chai, and Y. Sun, Semi-rational solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation in a plasma or fluid, Comput. Math. Appl. 76(11–12) (2018), pp. 2566–2574. doi: 10.1016/j.camwa.2018.08.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.