258
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation for a time-fractional coupled nonlinear Schrödinger equations

&
Pages 1233-1253 | Received 14 Jan 2019, Accepted 07 Aug 2020, Published online: 08 Sep 2020

References

  • F.B. Adda, J. Cresson, Fractional differential equations and the Schrödinger equation. App. Math. Comp. 161(1) (2005), pp. 323–345. doi: 10.1016/j.amc.2003.12.031
  • M.A. Akinlar, A. Secer, and M. Bayram, Numerical solution of fractional Benney equation, Appl. Math. Inf. Sci. 8 (2014), pp. 1–5.
  • P. Amore, F.M. Fernández, C.P. Hofmann, and R.A. Sáenz, Collocation method for fractional quantum mechanics, J. Math. Phys. 51 (2010), pp. 122101.
  • E. Barkari, J. Metzler, and J. Klafter, Form continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E 1 (2000), pp. 132–138. Available at https://doi.org/10.1103/PhysRevE.61.132.
  • M. Caputo, Linear model of dissipation whose Q is almost frequency independent - II, Geophys. J. R. Astron. Soc. 13 (1967), pp. 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x
  • R.E. Carlson and T.A. Foley, The parameter in multiquadric interpolation, Comput. Math. Appl. 21 (1991), pp. 29–42. doi: 10.1016/0898-1221(91)90123-L
  • W. Chen, L. Ye, and H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl. 59 (2010), pp. 1614–1620. doi: 10.1016/j.camwa.2009.08.004
  • A.H.-D. Cheng, Multiquadric and its shape parameter- A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation, Eng. Anal. Bound. Elem.36 (2012), pp. 220–239. doi: 10.1016/j.enganabound.2011.07.008
  • M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Meshless local Petrov-Galerkin and RBFs collocation methods for solving 2D fractional Klein-Kramers dynamic equation on irregular domains, Comput. Model. Eng. Sci. 107(6) (2015), pp. 481–516.
  • M.A. Diego, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl. 56 (2008), pp. 1138–1145. doi: 10.1016/j.camwa.2008.02.015
  • G.E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific, USA, 2007.
  • C. Franke and R. Schaback, Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math. 8 (1998), pp. 381–399. doi: 10.1023/A:1018916902176
  • Z. Fu, W. Chen, and H.T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys. 235 (2013), pp. 52–66. doi: 10.1016/j.jcp.2012.10.018
  • Z. Fu, S. Reutskiy, H.G. Sun, J. Ma, and M.A. Khan, A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains, Appl. Math. Lett. 94 (2019), pp. 105–111. doi: 10.1016/j.aml.2019.02.025
  • Z. Fu, L.W. Yang, H.Q. Zhu, and W.Z. Xu, A semi-analytical collocation Treffz scheme for solving multi-term time fractional diffusion-wave equations, Eng. Anal. Bound. Elem. 98 (2019), pp. 137–146. doi: 10.1016/j.enganabound.2018.09.017
  • J. Fujioka, A. Espinosa, and R.F. Rodrguez, Fractional optical solitons, Phys. Lett. A 374 (2010), pp. 1126–1134. doi: 10.1016/j.physleta.2009.12.051
  • R. Gorenflo and F. Mainardi, Essentials of fractional calculus. Preprint submitted to MaPhySto Center, January 28, 2000.
  • X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys.47 (2006), pp. 82–104.
  • R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys Res. 76 (1971), pp. 1905–1915. doi: 10.1029/JB076i008p01905
  • S. Haq and M. Hussain, The meshless Kansa method for time-fractional higher order partial differential eqautions with constant and variable coefficients, RACSAM 113 (2019), pp. 1935–1954. doi: 10.1007/s13398-018-0593-x
  • B. Hu, Y. Xu, and J. Hu, Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation, Appl. Math. Comput. 204 (2008), pp. 311–316.
  • E.J. Kansa, Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics, II: solutions to hyperbolic, parabolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), pp. 149–161. doi: 10.1016/0898-1221(90)90095-2
  • N. Laskin, Fractional quantum mechanics and Lavy path integrals, Phys. Lett. A 268 (2000), pp. 298–305. doi: 10.1016/S0375-9601(00)00201-2
  • N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2000), pp. 3135–3145. doi: 10.1103/PhysRevE.62.3135
  • N. Laskin, Time fractional quantum mechanics, Chaos 102 (2017), pp. 16–28.
  • O. Liu, Y.T. Gu, F. Liu, and Y.F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech. 48 (2011), pp. 1–12. doi: 10.1007/s00466-011-0573-x
  • Q. Liu, F. Zeng, and C. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math. 92(7) (2014), pp. 1439–1451. doi: 10.1080/00207160.2014.945440
  • W.R. Madcy and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (1990), pp. 211–230. doi: 10.1090/S0025-5718-1990-0993931-7
  • W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolations, Comput. Math. Appl. 24 (1992), pp. 121–138. doi: 10.1016/0898-1221(92)90175-H
  • A. Mardani, M.R. Hooshmandasl, M.H. Heydari, and C. Cattani, A meshless method for solving the time fractional advection-diffusion equation with variable coefficients, Comput. Math. Appl. 75(1) (2018), pp. 122–133. doi: 10.1016/j.camwa.2017.08.038
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Num. Math. 56 (2006), pp. 80–90. doi: 10.1016/j.apnum.2005.02.008
  • C.A. Michelli, Interpolation of scattered data :distance matrix and conditionally positive definite functions, Construct. Approx. 2 (1986), pp. 11–22. doi: 10.1007/BF01893414
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc., New York, 1993.
  • A. Mohebbi, M. Abbaszadeh, and M. Dehghan, The use of meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quatum mechanics, Eng. Anal. Bound. Elem. 37 (2013), pp. 475–485. doi: 10.1016/j.enganabound.2012.12.002
  • A. Mohebbi, M. Abbaszadeh, and M. Dehghan, Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method, Eng. Anal. Bound. Elem. 38 (2014), pp. 72–82. doi: 10.1016/j.enganabound.2013.09.015
  • S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. in Simul. 70 (2005), pp. 110–118. doi: 10.1016/j.matcom.2005.05.001
  • M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45(8) (2004), pp. 3339–3352. doi: 10.1063/1.1769611
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York - London, 1974.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • M. Ran and C. Zhang, Linearized Crank-Nicolson scheme for the nonlinear time-space fractional Schrödinger equations, J. Comput. Appl. Math. 355 (2019), pp. 218–231. doi: 10.1016/j.cam.2019.01.045
  • S.Z. Rida, H.M. El-Sherbiny, and A. Arafa, On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett. A 372 (2008), pp. 553–558. doi: 10.1016/j.physleta.2007.06.071
  • R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Advances in Comput. Math. 32(2) (1995), pp. 251–264. doi: 10.1007/BF02432002
  • Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion- wave system, Appl. Num. Math.56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • N.H. Sweilam, M.M. Abou Hasan, Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity. Eur. Phys. J. Plus 132(5) (2017), pp. 1–16. doi: 10.1140/epjp/i2017-11484-x
  • A.E. Tarwater, A parameter study of Hardy's multiquadric method for scattered data interpolation. Lawrence Livermore National Labaoratory, Technical report, 1985. UCRL-54670.
  • M. Uddin and S. Haq, RBFs approximation method for time fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), pp. 4208–4214. doi: 10.1016/j.cnsns.2011.03.021
  • M. Wadati, T. Izuka, and M. Hisakado, A coupled nonlinear Schrödinger equation and optical solitons, J. Phys. Soc. Japan, 61 (1992), pp. 2241–2245. doi: 10.1143/JPSJ.61.2241
  • T. Wang, T. Nie, and L. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system, J. Comput. Appl. Math. 231 (2009), pp. 745–759. doi: 10.1016/j.cam.2009.04.022
  • D. Wang, A. Xiao, and W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013), pp. 670–681. doi: 10.1016/j.jcp.2013.02.037
  • L. Wei, Y. He, X. Zhang, and S. Whang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des. 59 (2012), pp. 28–34. doi: 10.1016/j.finel.2012.03.008
  • L. Wei, X. Zhang, S. Kumar, and A. Yıldırım, A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system, Comput. Math. Appl. 64(8) (2012), pp. 2603–2615. doi: 10.1016/j.camwa.2012.07.004
  • H. Wendland. Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Vol. 17, Cambridge University Press, Cambridge, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.