315
Views
3
CrossRef citations to date
0
Altmetric
Articles

An extrapolated finite difference method for two-dimensional fractional boundary value problems with non-smooth solution

, &
Pages 274-291 | Received 02 Jul 2020, Accepted 15 Feb 2021, Published online: 11 May 2021

References

  • D. Benson, S. Wheatcraft, and M.M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res. 36 (2000), pp. 1413–1423.
  • D. Benson, R. Schumer, M.M. Meerschaert, and S Wheatcraft, Fractional dispersion, Levy motions MADE tracer tests, Transp. Porous Media 42 (2001), pp. 211–240.
  • W. Bu, Y. Tang, and J. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Sci. Comput. 276 (2014), pp. 26–38.
  • Y. Cao, T. Herdman, and Y. Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal. 41 (2003), pp. 364–381.
  • W. Cao, F. Zeng, Z. Zhang, and G. Karniadakis, Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput. 38 (2016), pp. A3070–A3093.
  • S. Chen, J. Shen, and L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp. 85 (2016), pp. 1603–1638.
  • H. Chen, F. Hollandb, and M. Stynes, An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions, Appl. Numer. Math. 139 (2019), pp. 52–61.
  • H. Ding and C. Li, A high-order algorithm for time-Caputo-tempered partial differential equation with Risez derivatives in two spatial dimensions, J. Sci. Comput. 80 (2019), pp. 81–109.
  • V. Ervin, N. Heuer, and J. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007), pp. 572–591.
  • X. Gu, T. Huang, C. Ji, B. Carpentieri, and A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection–diffusion equation, J. Sci. Comput. 72 (2017), pp. 957–985.
  • S. Guo, L. Mei, Z. Zhang, and Y. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order timespace fractional reaction–diffusion equation, Appl. Math. Lett.85 (2018), pp. 157–163.
  • Z. Hao and W. Cao, An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution, J. Sci. Comput. 73 (2017), pp. 395–415.
  • Z. Hao, Z.Z. Sun, and W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys. 281 (2015), pp. 787–805.
  • Z. Hao, K. Fan, W. Cao, and Z.Z. Sun, A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Appl. Math. Comput. 275 (2016), pp. 238–254.
  • Z. Hao, W. Cao, S. Li, Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity, Numer. Algorithms 3 (2021), pp. 1071–1087.
  • Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resour. Res. 34 (1998), pp. 1027–1033.
  • F. Höfling and T Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76 (2013), pp. 046602.
  • J. Jia and H. Wang, A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys. 310 (2016), pp. 63–84.
  • B. Jin and Z. Zhou, A finite element method with singularity reconstruction for fractional boundary value problems, ESAIM: M2AN 49 (2015), pp. 1261–1283.
  • X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), pp. 1016–1051.
  • Z. Lin, F. Liu, D. Wang, and Y. Gu, Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains, Eng. Anal. Bound. Elem. 97 (2018), pp. 131–143.
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), pp. 704–719.
  • P. Lyu, Y. Liang, and Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math. 151 (2020), pp. 448–471.
  • W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math. 105 (2007), pp. 481–510.
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, J. Comput. Appl. Math.172 (2004), pp. 65–77.
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), pp. 80–90.
  • K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal. 51 (2013), pp. 491–515.
  • I. PodlubnyFractional Differential Equations, Acad Press, New York, 1999.
  • M. Stynes, E. O'Riordan, and J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55 (2017), pp. 1057–1079.
  • C. Tadjeran, M.M. Meerschaert, and H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), pp. 205–213.
  • W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp. 84 (2015), pp. 1703–1727.
  • Z. Wang, D. Cen, and Y. Mo, Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels, Appl. Numer. Math. 159 (2021), pp. 190–203.
  • Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), pp. 200–218.
  • B. Yin, Y. Liu, H. Li, and S. He, Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions, J. Comput. Phys. 379 (2019), pp. 351–372.
  • S. Yuste and J. Quintana-Murillo, A finite difference method with non-uniform time steps for fractional diffusion equations, Comput. Phys. Commun. 183 (2012), pp. 2594–2600.
  • M. Zayernouri and G. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput. 36 (2014), pp. A40–A62.
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, SIAM J. Numer. Anal. 52 (2014), pp. 2599–2622.
  • F. Zeng, Z. Zhang, and G. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations, SIAM J. Sci. Comput. 37 (2015), pp. A2710–A2732.
  • F. Zeng, C. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37 (2015), pp. A55–A78.
  • F. Zeng, Z. Zhang, and G. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Eng. 327 (2017), pp. 478–502.
  • L. Zhao and W. Deng, High order finite difference methods on non-uniform meshes for space fractional operators, Adv. Comput. Math. 42 (2016), pp. 425–468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.