308
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of lump-kink and their fission-fusion interactions, rogue, and breather wave solutions for a (3+1)-dimensional generalized shallow water equation

, , , &
Pages 714-736 | Received 17 Jul 2020, Accepted 03 May 2021, Published online: 04 Jun 2021

References

  • K.S. Al-Ghafri, and H. Rezazadeh, Solitons and other solutions of (3+1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 4 (2019), pp. 289–304.
  • C.J. Bai, H. Zhao, H.Y. Xu, and X. Zhang, New traveling wave solutions for a class of nonlinear evolution equations. Int. J. Mod. Phys. B 25 (2011), pp. 319–327.
  • L. Debnath, and K. Basu, Nonlinear Water Waves and Nonlinear Evolution Equations with Applications, Encyclopedia of Complexity and Systems Science, Springer, Berlin, 2014. Available at https://link.springer.com/referencework/https://doi.org/10.1007/978-3-642-27737-5
  • X.X. Du, B. Tian, and Y. Yin, Lump, mixed lump-kink, breather and rogue waves for a B-type Kadomtsev-Petviashvili equation. Wave Random Complex Media 31 (2021), pp. 101–116. doi:https://doi.org/10.1080/17455030.2019.1566681.
  • İ Esin, and İO Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 5 (2020), pp. 171–188.
  • W. Gao, H.M. Baskonus, and L. Shi, New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system. Adv. Difference Equ. 2020 (2020), pp. 391. doi:https://doi.org/10.1186/s13662-020-02831-6.
  • W. Gao, P. Veeresha, D.G. Prakasha, and H.M. Baskonus, New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques. Numer. Methods Partial Differ. Equations 37 (2021), pp. 210–243. doi:https://doi.org/10.1002/num.22526.
  • W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, and G. Yel, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Soliton Fractals 134 (2020), pp. 109696. doi:https://doi.org/10.1016/j.chaos.2020.109696.
  • D. Gomez-Ullate, S. Lombardo, M. Manas, and M. Mazzocco, Integrability and nonlinear phenomena. J. Phys. A 43 (2010), pp. 430301. doi:https://doi.org/10.1088/1751-8121/43/43/430301.
  • C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Scientific Technical Publishers, Shanghai, 1999.
  • J. Gu, Y. Zhang, and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional shallow water wave equation. Comput. Math. Appl. 76 (2018), pp. 1408–1419.
  • J.H. He, New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20 (2006), pp. 2561–2568.
  • Q.M. Huang, and Y.T. Gao, Bilinear form, bilinear Bäcklund transformation and dynamic features of the soliton solutions for a variable-coefficient (3+1)-dimensional generalized shallow water wave equation. Mod. Phys. Lett. B 31 (2017), pp. 1750126.
  • Q.M. Huang, Y.T. Gao, S.L. Jia, Y.L. Wang, and G.F. Deng, Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation. Nonlinear Dynam. 87 (2017), pp. 2529–2540.
  • L. Kaur, and A.M. Wazwaz, Dynamical analysis of lump solutions for (3+1) dimensional generalized KP–Boussinesq equation and its dimensionally reduced equations. Phys. Scr. 93 (2018), pp. 075203.
  • L. Kaur, and A.M. Wazwaz, Bright-dark lump wave solutions for a new form of the (3+1)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys. 71 (2019), pp. 1–11.
  • L. Kaur, and A.M. Wazwaz, Bright–dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik. (Stuttg) 179 (2019), pp. 479–484.
  • L. Kaur, and A.M. Wazwaz, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Methods Heat Fluid Flow 29 (2019), pp. 569–579.
  • H. Kim, and R. Sakthivel, New exact traveling wave solutions of some nonlinear higher-dimensional physical models. Rep. Math. Phys. 70 (2012), pp. 39–50.
  • D. Kumar, K. Hosseini, and F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik. (Stuttg) 149 (2017), pp. 439–446.
  • D. Kumar, A.K. Joardar, A. Hoque, and G.C. Paul, Investigation of dynamics of nematicons in liquid crystals by extended sinh-Gordon equation expansion method. Opt. Quant. Electron. 51 (2019), pp. 212. doi:https://doi.org/10.1007/s11082-019-1917-6.
  • D. Kumar, and S. Kumar, Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. Comput. Math. Appl. 78 (2019), pp. 857–877.
  • D. Kumar, A.R. Seadawy, and M.R. Haque, Multiple soliton solutions of the nonlinear partial differential equations describing the wave propagation in nonlinear low–pass electrical transmission lines. Chaos, Solitons Fractals 115 (2018), pp. 62–76.
  • D. Kumar, J. Singh, and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Phys. A 492 (2018), pp. 155–167.
  • Y.Z. Li, and J.G. Liu, Multiple periodic-soliton solutions of the (3+1)-dimensional generalized shallow water equation. Pramana 90 (2018), pp. 71. doi:https://doi.org/10.1007/s12043-018-1568-3.
  • J.G. Liu, and Y. He, New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation. Nonlinear Dynam. 90 (2017), pp. 363–369.
  • J.G. Liu, and W.H. Zhu, Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans. Comput. Math. Appl. 78 (2019), pp. 848–856.
  • S.H. Liu, B. Tian, Q.X. Qu, H. Li, X.H. Zhao, X.X. Du, and S.S. Chen, Breather, lump, shock and travelling-wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. 98 (2021), pp. 1130–1145. doi:https://doi.org/10.1080/00207160.2020.1805107.
  • S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289 (2001), pp. 69–74.
  • Y. Liu, and X. Wen, Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Mod. Phys. Lett. B 32 (2018), pp. 1850161. doi:https://doi.org/10.1142/S0217984918501610.
  • S.Y. Lou, and L.L. Chen, Formally variable separation approach for nonintegrable models. J. Math. Phys. 40 (1999), pp. 6491–6500.
  • X. Lu, and W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dynam. 85 (2016), pp. 1217–1222.
  • H.C. Ma, and A.P. Deng, Lump solution of (2+1)-dimensional Boussinesq equation. Commun. Theor. Phys. 65 (2016), pp. 546–552.
  • W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379 (2015), pp. 1975–1978.
  • W.X. Ma, Z.Y. Qin, and X. Lu, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam 84 (2016), pp. 923–931.
  • X.M. Meng, Rational solutions in Grammian form for the (3+1)-dimensional generalized shallow water wave equation. Comput. Math. Appl. 75 (2018), pp. 4534–4539.
  • M. Mohammad, and C. Cattani, Applications of bi-framelet systems for solving fractional order differential equations. Fractals 28 (2020), pp. 2040051. doi:https://doi.org/10.1142/S0218348X20400514.
  • M. Mohammad, and A. Trounev, Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling. Chaos Solitons Fractal 138 (2020), pp. 109991. doi:https://doi.org/10.1016/j.chaos.2020.109991.
  • Z. Odibat, and D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math 156 (2020), pp. 94–105.
  • G.C. Paul, F.Z. Eti, and D. Kumar, Dynamical analysis of lump, lump-triangular periodic, predictable rogue and breather wave solutions to the (3+1)-dimensional gKP–Boussinesq equation. Results Phys. 19 (2020), pp. 103525. doi:https://doi.org/10.1016/j.rinp.2020.103525.
  • G.C. Paul, A.H.M. Rashedunnabi, and M.D. Haque, Testing efficiency of the generalised ()-expansion method for solving nonlinear evolution equations. Pramana 92 (2019), pp. 25. doi:https://doi.org/10.1007/s12043-018-1669-z.
  • R. Sadat, M. Kassem, and W.X. Ma, Abundant lump-type solutions and interaction solutions for a nonlinear (3+1)-dimensional model. Adv. Math. Phys. 2018 (2018), pp. 9178480. doi:https://doi.org/10.1155/2018/9178480.
  • A.R. Seadawy, D. Kumar, K. Hosseini, and F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions. Results Phys. 9 (2018), pp. 1631–1634.
  • J. Singh, D. Kumar, Z. Hammouch, and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316 (2018), pp. 504–515.
  • Y.N. Tang, W.X. Ma, and W. Xu, Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation. Chin. Phys. B 21 (2012), pp. 070212. doi:101088/1674-1056/21/7/070212.
  • Y.N. Tang, S.Q. Tao, and Q. Guan, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72 (2016), pp. 2334–2342.
  • P. Veeresha, D.G. Prakasha, H.M. Baskonus, and G. Yel, An efficient analytical approach for fractional Lakshmanan-Porsezian-Daniel model. Math. Methods Appl. Sci. 43 (2020), pp. 4136–4155.
  • C.J. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dynam. 84 (2016), pp. 697–702.
  • H. Wang, Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 85 (2018), pp. 27–34.
  • M.L. Wang, Y.B. Zhou, and Z.B. Li, Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216 (1996), pp. 67–75.
  • M. Wang, B. Tian, Q.X. Qu, X.H. Zhao, Z. Zhang, and H.Y. Tian, Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. 97 (2020), pp. 2474–2486. doi:https://doi.org/10.1080/00207160.2019.1704741.
  • J. Wu, X. Xing, and X. Geng, Generalized bilinear differential operators’ application in a (3+1)-dimensional generalized shallow water equation. Adv. Math. Phys. 2015 (2015), pp. 291804. doi:https://doi.org/10.1155/2015/291804.
  • J.J. Yang, S.F. Tian, W.Q. Peng, Z.Q. Li, and T.T. Zhang, The lump, lumpoff and rouge wave solutions of a (3+1)-dimensional generalized shallow water wave equation. Mod. Phys. Lett. B 33 (2019), pp. 1950190. doi:https://doi.org/10.1142/S0217984919501902.
  • J.Y. Yang, and W.X. Ma, Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30 (2016), pp. 1640028. doi:https://doi.org/10.1142/S0217979216400282.
  • Z.F. Zeng, J.G. Liu, and B. Nie, Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dynam. 86 (2016), pp. 667–675.
  • Y. Zhang, H. Dong, X. Zhang, and H. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput. Math. Appl. 73 (2017), pp. 246–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.