1,254
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of integrals with fractional Brownian motion for different Hurst indices

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 847-866 | Received 05 Apr 2022, Accepted 22 Dec 2022, Published online: 06 Jan 2023

References

  • M.A. Akinlar, M. Inc, J.F. Gómez-Aguilar, and B. Boutarfa, Solutions of a disease model with fractional white noise, Chaos Solit. Fractals 137 (2020), pp. 109840.
  • F.E. Benth, On arbitrage-free pricing of weather derivatives based on fractional Brownian motion, Appl. Math. Finance 10 (2003), pp. 303–324.
  • F.E. Benth and J. Saltyte-Benth, Modeling and Pricing in Financial Markets for Weather Derivatives, Vol. 17, World Scientific, Singapore, 2012.
  • F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science & Business Media, Berlin, German, 2008.
  • B.C. Boonstra and C.W. Oosterlee, Valuation of electricity storage contracts using the COS method, Appl. Math. Comput. 410 (2021), pp. 126416.
  • D.C. Brody, J. Syroka, and M. Zervos, Dynamical pricing of weather derivatives, Quant. Finance 2 (2002), pp. 189.
  • J.C. Cox, J.E. Ingersoll Jr, and S.A. Ross, A theory of the term structure of interest rates. Econometrica 53(2) (1985), pp. 385–407.
  • D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), pp. 1343–1376.
  • F. Fang and C.W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput. 31 (2009), pp. 826–848.
  • F. Fang and C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. Math. 114 (2009), pp. 27–62.
  • D. Filipović and M. Larsson, Polynomial diffusions and applications in finance, Finance Stoch. 20 (2016), pp. 931–972.
  • D. Filipović and M. Larsson, Polynomial jump-diffusion models, Stoch. Syst. 10 (2020), pp. 71–97.
  • H. Fink and C. Klüppelberg, Fractional Lévy-driven Ornstein–Uhlenbeck processes and stochastic differential equations, Bernoulli 17 (2011), pp. 484–506.
  • H. Fink, C. Klüppelberg, and M. Zähle, Conditional distributions of processes related to fractional Brownian motion, J. Appl. Probab. 50 (2013), pp. 166–183.
  • J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough, Quant. Finance 18 (2018), pp. 933–949.
  • A. Gil, J. Segura, and N.M. Temme, Numerical Methods for Special Functions, SIAM, Philadelphia, PA, 2007.
  • S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6 (1993), pp. 327–343.
  • G. Livieri, S. Mouti, A. Pallavicini, and M. Rosenbaum, Rough volatility: evidence from option prices, IISE Trans. 50 (2018), pp. 767–776.
  • S. Lu, F.J. Molz, and H.H. Liu, An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Lévy motion simulation algorithm based on successive random additions, Comput. Geosci. 29 (2003), pp. 15–25.
  • Y. Mishura and A. Yurchenko-Tytarenko, Fractional Cox–Ingersoll–Ross process with non-zero mean, Mod. Stoch. Theory Appl. 5 (2018), pp. 99–111.
  • F.J. Molz, H.H. Liu, and J. Szulga, Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions, Water Resour. Res. 33 (1997), pp. 2273–2286.
  • I. Norros, A storage model with self-similar input, Queueing Syst. 16 (1994), pp. 387–396.
  • I. Norros, On the use of fractional Brownian motion in the theory of connectionless networks, IEEE J. Sel. Areas Commun. 13 (1995), pp. 953–962.
  • D. Nualart, Fractional Brownian Motion: Stochastic Calculus and Applications, Proceedings of the International Congress of Mathematicians, European Mathematical Society, Madrid, Spain, 2006
  • A.B. Olde Daalhuis, Chapter 15, Hypergeometric function, in NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, pp. 383–401. http://dlmf.nist.gov/15. MR 2655355.
  • F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
  • A. Pashko, Simulation of telecommunication traffic using statistical models of fractional Brownian motion, in 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). IEEE, 2017, pp. 414–418.
  • V. Pipiras and M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7 (2001), pp. 873–897.
  • G.J. Power and C.G. Turvey, Long-range dependence in the volatility of commodity futures prices: Wavelet-based evidence, Phys. A: Stat. Mech. Appl. 389 (2010), pp. 79–90.
  • C.R. Rivero, D. Patiño, J. Pucheta, and V. Sauchelli, A new approach for time series forecasting: Bayesian enhanced by fractional Brownian motion with application to rainfall series, Int. J. Adv. Comput. Sci. Appl. 7 (2016), pp. 237–244.
  • R. Roy, F.W.J. Olver, R.A. Askey, and R. Wong, Chapter 1, Algebraic and analytic methods, in NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 1–39. http://dlmf.nist.gov/1. MR 2655341.
  • E.C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition. MR 3155290.
  • A.A. Tsonis, P.J. Roebber, and J.B. Elsner, Long-range correlations in the extratropical atmospheric circulation: Origins and implications, J. Clim. 12 (1999), pp. 1534–1541.
  • X. Wang, W. Xiao, and J. Yu, Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process, J. Econ. (2021). forthcoming.
  • A. Ware, Polynomial processes for power prices, Appl. Math. Finance 26 (2020), pp. 453–474.
  • W. Xiao, W. Zhang, X. Zhang, and Y. Wang, Pricing currency options in a fractional Brownian motion with jumps, Econ. Model. 27 (2010), pp. 935–942.