99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Uniformly convergent hybrid numerical scheme for singularly perturbed turning point problems with delay

&
Pages 1052-1077 | Received 21 Feb 2022, Accepted 17 Sep 2022, Published online: 07 Feb 2023

References

  • Z. Cen, A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Appl. Math. Comput. 169(1) (2005), pp. 689–699.
  • R.V. Culshaw and S. Ruan, A delay differential equation model of HIV infection of CD4 + T-cells, Math. Biosci. 165 (2000), pp. 27–39.
  • E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
  • E.L. Els'gol'ts, Qualitative Methods in Mathematical Analysis in: Translations of Mathematical Monographs, Vol. 12, American Mathematical Society, Providence, 1964.
  • P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan, and G.I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman-Hall/CRC, Boca Raton, 2000.
  • P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan, and G.I. Shishkin, Singularly perturbed convection-diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math. 166(1) (2004), pp. 133–151.
  • F.Z. Geng and S.P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model. 39 (2015), pp. 5592–5597.
  • V.Y. Glizer, Asymptotic analysis and solution of a finite-horizon H∞ control problem for singularly perturbed linear systems with small state delay, J. Optim. Theory Appl. 117 (2003), pp. 295–325.
  • M.K. Kadalbajoo and K.K. Sharma, Numerical analysis of boundary value problem for singularly perturbed delay differential equations with layer behaviour, Appl. Math. Comput. 151(1) (2004), pp. 11–28.
  • C.G. Lange and R.M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math. 42 (1982), pp. 502–531.
  • C.G. Lange and R.M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. III. Turning point problems, SIAM J. Appl. Math. 45 (1985), pp. 708–734.
  • A. Longtin and J. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback, Math. Biosci. 90 (1988), pp. 183–199.
  • A. Majumdar and S. Natesan, An ε-hybrid numerical scheme for a singularly perturbed degenerate parabolic convection-diffusion problem, Int. J. Comput. Math. 96(7) (2019), pp. 1313–1334.
  • A. Majumdar and S. Natesan, A higher-order hybrid numerical scheme for singularly perturbed convection-diffusion problem with boundary and weak interior layers, Int. J. Math. Model. Numer. Optim. 10(1) (2020), pp. 68–101.
  • C.K. Mbayi, J.B. Munyakazi, and K.C. Patidar, A robust fitted numerical method for singularly perturbed turning point problems whose solution exhibits an interior layer, Quaest. Math. 43(1) (2020), pp. 1–24.
  • J.J.H. Miller, E. O'Riordan, and G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996.
  • K. Mukherjee and S. Natesan, Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems, Computing 84(3–4) (2009), pp. 209–230.
  • K. Mukherjee and S. Natesan, ε-uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers, Numer. Algorithms 58(1) (2011), pp. 103–141.
  • J.B. Munyakazi and K.C. Patidar, Performance of Richardson extrapolation on some numerical methods for a singularly perturbed turning point problem whose solution has boundary layers, J. Korean Math. Soc. 51(4) (2014), pp. 679–702.
  • J.B. Munyakazi, K.C. Patidar, and M.T. Sayi, A robust fitted operator finite difference method for singularly perturbed problems whose solution has an interior layer, Math. Comput. Simul. 160 (2019), pp. 155–167.
  • S. Natesan, J. Jayakumar, and J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math. 158 (2003), pp. 121–134.
  • S. Natesan and N. Ramanujam, A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers, Appl. Math. Comput. 93 (1998), pp. 259–275.
  • S. Natesan and N. Ramanujam, Initial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers, J. Optim. Theory Appl. 99 (1998), pp. 37–52.
  • S. Nicaise and C. Xenophontos, Robust approximation of singularly perturbed delay differential equation by the hp finite element method, Comput. Methods Appl. Math. 13 (2013), pp. 21–37.
  • P. Rai and K.K. Sharma, Numerical analysis of singularly perturbed delay differential turning point problem, Appl. Math. Comput. 218 (2011), pp. 3483–3498.
  • P. Rai and K.K. Sharma, Parameter uniform numerical method for singularly perturbed differential difference equations with interior layer, Int. J. Comput. Math. 88(16) (2011), pp. 3416–3435.
  • P. Rai and K.K. Sharma, Fitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers, Int. J. Comput. Math. 89(7) (2012), pp. 944–961.
  • P. Rai and K.K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl. 63 (2012), pp. 118–132.
  • P. Rai and K.K. Sharma, Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s), Numer. Algorithms 85(1) (2019), pp. 305–328.
  • R.N. Rao and P.P. Chakravarthy, A finite difference method for singularly perturbed differential difference equations with layer and oscillatory behaviour, Appl. Math. Model. 37 (2013), pp. 5743–5755.
  • H.G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion and Flow Problems, Springer, Berlin, 1996.
  • P. Selvi and N. Ramanujam, An iterative numerical method for singularly perturbed reaction diffusion equations with negative shift, J. Comput. Appl. Math. 296 (2016), pp. 10–23.
  • M. Stynes and H.G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23(3) (1997), pp. 361–374.
  • V. Subburayan and N. Ramanujam, Uniformly convergent finite difference schemes for singularly perturbed convection diffusion type delay differential equations, Differ. Equ. Dyn. Syst. 29(1) (2019), pp. 139–155.
  • Z.Q. Tang and F.Z. Geng, Fitted reproducing kernel method for singularly perturbed delay initial value problem, Appl. Math. Comput. 284 (2016), pp. 169–174.
  • D.Y. Tzou, Macro-to-Microscale Heat Transfer, Taylor and Francis, Washington, 1997.
  • R. Vulanović and P.A. Farrell, Continuous and numerical analysis of a multiple boundary turning point problem, SIAM J. Numer. Anal. 30 (1993), pp. 1400–1418.
  • H. Zarin, On discontinuous Galerkin finite element method for singularly perturbed delay differential equations, Appl. Math. Lett. 38 (2014), pp. 27–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.