216
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Efficient parallel Monte-Carlo techniques for pricing American options including counterparty credit risk

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Oct 2022, Accepted 18 Jan 2023, Published online: 06 Feb 2023

References

  • L.A. Abbas-Turki, S. Crépey, and B. Diallo, XVA principles, nested Monte Carlo strategies, and GPU optimizations, Int. J. Theoretical Appl. Finance 21 (2018), p. 1850030. https://doi.org/10.1142/S0219024918500309.
  • C. Albanese, S. Caenazzo, and S. Crépey, Credit, funding, margin, and capital valuation adjustments for bilateral portfolios, Probability, Uncertainty Quantitative Risk 2 (2017), p. 7.
  • N. Areal, A. Rodrigues, and M. Armada, On improving the least squares monte carlo option valuation method, Rev. Derivatives Res. 11 (2008), pp. 119–151.
  • I. Arregui, B. Salvador, and C. Vázquez, PDE models and numerical methods for total value adjustment in European and American options with counterparty risk, Appl. Math. Comput. 308 (2017), pp. 31–53.
  • I. Arregui, B. Salvador, and C. Vázquez, A Monte Carlo approach to American options pricing including counterparty risk, Int. J. Comput. Math. 96 (2019), pp. 2157–2176.
  • I. Arregui, B. Salvador, D. Ševčovič, and C. Vázquez, Total value adjustment for European options with two stochastic factors. Mathematical model, analysis and numerical simulation, Computers Math. Appl. 76 (2018), pp. 725–740.
  • I. Arregui, B. Salvador, D. Ševčovič, and C. Vázquez, PDE models for American options with counterparty risk and two stochastic factors: Mathematical analysis and numerical solution, Computers Math. Appl. 79 (2020), pp. 1525–1542. https://doi.org/10.1016/j.camwa.2019.09.014
  • M. Benguigui and F. Baude, Fast American basket option pricing on a multi-GPU cluster, in Proceedings of the 22nd High Performance Computing Symposium, Tampa, FL, 2014, pp. 1–8.
  • A. Borovykh, C.W. Oosterlee, and A. Pascucci, Efficient XVA computation under local Lévy models, SIAM J. Financial Math. 9 (2018), pp. 251–273.
  • P. Boyle, M. Broadie, and P. Glasserman, Monte Carlo methods for security pricing, J. Economic Dyn. Control 21 (1997), pp. 1267–1321.
  • D. Brigo and A. Capponi, Bilateral counterparty risk valuation with stochastic dynamical models and applications to CDSs, preprint (2009). Available at arXiv, math. 0812.3705.
  • D. Brigo, M. Morini, and A. Pallavicini, Counterparty Credit Risk, Collateral and Funding, Wiley, 2013.
  • C. Burgard and M. Kjaer, In the balance, Risk (2011), pp. 72–75. https://dx.doi.org/10.2139/ssrn.1785262.
  • C. Burgard and M. Kjaer, PDE representations of derivatives with bilateral counterparty risk and funding costs, J. Credit Risk 7 (2011), pp. 1–19.
  • C. Burgard and M. Kjaer, Funding strategies, funding costs, Risk (2013), pp. 82–87.
  • L. Capriotti, Y. Jiang, and A. Macrina, AAD and least-square Monte Carlo: Fast Bermudan-style options and XVA Greeks, Algorithmic Finance 6 (2017), pp. 35–49.
  • L. Capriotti, S. Lee, and J.M. Peacock, Real time counterparty credit risk management in Monte Carlo, Risk (2011), pp. 1–7.
  • J.F. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance: Math. Econ. 19 (1996), pp. 19–30. https://www.sciencedirect.com/science/article/pii/S0167668796000042.
  • K.W. Chau, J. Tang, and C.W. Oosterlee, An SGBM-XVA demonstrator: A scalable Python tool for pricing XVA, J. Math. Industry 10(7) (2020), pp. 1–19.
  • Y. Chen and C.C. Christara, Penalty methods for bilateral XVA pricing in European and American contingent claims by a partial differential equation model, J. Comput. Finance 24 (2021), pp. 41–70.
  • F. Cong and C.W. Oosterlee, Pricing Bermudan options under Merton jump-diffusion asset dynamics, Int. J. Comput. Math. 92 (2015), pp. 2406–2432.
  • S. Cook, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs, 1st ed., Morgan Kaufmann Publishers Inc., San Francisco, 2013.
  • S. Crépey, Bilateral counterparty risk under funding constraints–part I: Pricing, Math. Finance 25 (2015), pp. 1–22.
  • S. Crépey, Bilateral counterparty risk under funding constraints–part II: CVA, Math. Finance 25 (2015), pp. 23–50.
  • CUB webpage. Available at https://nvlabs.github.io/cub/.
  • CUDA programming guide. Available at https://docs.nvidia.com/cuda/cuda-c-programming-guide/.
  • CUDA webpage. Available at https://developer.nvidia.com/cuda-zone.
  • cuRAND webpage. Available at https://developer.nvidia.com/curand.
  • F. Fang and C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numerische Mathematik 114 (2009), pp. 27–62.
  • M. Fatica and E. Phillips, Pricing American options with least squares Monte Carlo on GPUs, in Proceedings of the 6th Workshop on High Performance Computational Finance, WHPCF '13, ACM, New York, NY, 2013, pp. 1–6. http://doi.acm.org/10.1145/2535557.2535564.
  • Q. Feng and C.W. Oosterlee, Computing credit valuation adjustment for Bermudan options with wrong way risk, Int. J. Theoretical Appl. Finance 20 (2017), p. 1750056.
  • J. Fernández, A. Ferreiro, J. García-Rodríguez, A. Leitao, J. López-Salas, and C. Vázquez, Static and dynamic SABR stochastic volatility models: Calibration and option pricing using GPUs, Math. Comput. Simul. 94 (2013), pp. 55–75. https://www.sciencedirect.com/science/article/pii/S0378475413001389.
  • A.M. Ferreiro-Ferreiro, J.A. García-Rodríguez, L. Souto, and C. Vázquez, A new calibration of the Heston stochastic local volatility model and its parallel implementation on GPUs, Math. Comput. Simul. 177 (2020), pp. 467–486. https://www.sciencedirect.com/science/article/pii/S0378475420301129.
  • P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003.
  • P. Glasserman and B. Yu, Simulation for American options: Regression now or regression later? in Monte Carlo and Quasi-Monte Carlo Methods 2002, Springer, 2004, pp. 213–226.
  • M.B. Haugh and L. Kogan, Pricing American options: A duality approach, Oper. Res. 52 (2004), pp. 258–270. http://www.jstor.org/stable/30036577.
  • S. Jain, Á. Leitao, and C.W. Oosterlee, Rolling adjoints: Fast greeks along Monte Carlo scenarios for early-exercise options, J. Comput. Sci. 33 (2019), pp. 95–112. http://www.sciencedirect.com/science/article/pii/S1877750318312547.
  • S. Jain and C.W. Oosterlee, Pricing high-dimensional Bermudan options using the stochastic grid method, Int. J. Comput. Math. 89 (2012), pp. 1186–1211. https://doi.org/10.1080/00207160.2012.690035.
  • S. Jain and C.W. Oosterlee, The stochastic grid bundling method: Efficient pricing of Bermudan options and their Greeks, Appl. Math. Comput. 269 (2015), pp. 412–431.
  • B. Jan, B. Montrucchio, C. Ragusa, F.G. Khan, and O. Khan, Fast parallel sorting algorithms on GPUs, Int. J. Distributed Parallel Syst. 3 (2012), pp. 107–118.
  • D.B. Kirk and W.W. Hwu, Programming Massively Parallel Processors: A Hands-On Approach, 3rd ed., Elsevier, 2017.
  • P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992.
  • A. Leitao and C.W. Oosterlee, GPU acceleration of the stochastic grid bundling method for early-exercise options, Int. J. Comput. Math. 92 (2015), pp. 2433–2454.
  • F.A. Longstaff and E.S. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev. Financial Stud. 14 (2001), pp. 113–147.
  • Modern GPU webpage. Available at https://moderngpu.github.io/.
  • A. Pallavicini, D. Perini, and D. Brigo, Funding valuation adjustment: A consistent framework including CVA, DVA, collateral, netting rules and re-hypotecation, SSRN Electronic Journal (2011), pp. 1–23.
  • A. Pascucci, PDE and Martingale Methods in Option Pricing, Springer, 2011.
  • V. Piterbarg, Funding beyond discounting: Collateral agreements and derivatives pricing, Risk 23 (2010), pp. 97–102.
  • L.C.G. Rogers, Monte Carlo valuation of American options, Math. Finance 12 (2002), pp. 271–286.
  • N. Satish, M. Harris, and M. Garland, Designing efficient sorting algorithms for manycore GPUs, in Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium, 2009.
  • L. Stentoft, Convergence of the least squares monte carlo approach to American option valuation, Manage. Sci. 50 (2004), pp. 1193–1203. https://doi.org/10.1287/mnsc.1030.0155.
  • Thrust webpage. Available at https://developer.nvidia.com/thrust.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.