29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analyzing the time-fractional (3 + 1)-dimensional nonlinear Schrödinger equation: a new Kudryashov approach and optical solutions

Pages 524-537 | Received 28 Dec 2023, Accepted 29 Apr 2024, Published online: 07 May 2024

References

  • S. Ahmad, A. Ullah, S. Ahmad, and A. Akgül, Bright, dark and hybrid multistrip optical soliton solutions of a non-linear Schrödinger equation using modified extended tanh technique with new Riccati solutions, Opt. Quantum Electron. 55(3) (2023), p. 236.
  • D. Baleanu, A. Jajarmi, H. Mohammadi, and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos Solit. Fractals 134 (2020), p. 109705.
  • D. Baleanu, S.M. Aydogn, H. Mohammadi, and S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace adomian decomposition method, Alex. Eng. J. 59(5) (2020), pp. 3029–3039.
  • D. Baleanu, S. Etemad, H. Mohammadi, and S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul. 100 (2021), p. 105844.
  • A. Biswas, A. Sonmezoglu, M. Ekici, M. Mirzazadeh, Q. Zhou, S.P. Moshokoa, and M. Belic, Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov's method, Optik (Stuttg). 164 (2018), pp. 303–310.
  • C.-Q. Dai, Y. Wang, and J. Liu, Spatiotemporal Hermite–Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation, Nonlinear Dyn. 84 (2016), pp. 1157–1161.
  • M. Huang, M.A.S. Murad, O.A. Ilhan, and J. Manafian, One-, two-and three-soliton, periodic and cross-kink solutions to the (2+1)-D variable-coefficient KP equation, Mod. Phys. Lett. B 34(4) (2020), p. 2050045.
  • M. Jneid and A. Chaouk, The conformable reduced differential transform method for solving newell-whitehead-segel equation with non-integer order, J. Anal. Appl. 18(1) (2020), pp. 35–51.
  • R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), pp. 65–70.
  • H. Khan, K. Alam, H. Gulzar, S. Etemad, and S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul. 198 (2022), pp. 455–473.
  • N.A. Kudryashov, Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity, Optik (Stuttg). 188 (2019), pp. 27–35.
  • N.A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik (Stuttg). 206 (2020), p. 163550.
  • N.A. Kudryashov, Method for finding optical solitons of generalized nonlinear Schrödinger equations, Optik (Stuttg). 261 (2022), p. 169163.
  • D. Kumar and M. Kaplan, Application of the modified Kudryashov method to the generalized Schrödinger–Boussinesq equations, Opt. Quantum Electron. 50(9) (2018), pp. 1–14.
  • P. Li, B.A. Malomed, and D. Mihalache, Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity, Chaos Solit. Fractals 137 (2020), p. 109783.
  • F.-Y. Liu, H. Triki, and Q. Zhou, Optical nondegenerate solitons in a birefringent fiber with a 35 degree elliptical angle, Opt. Express 32(2) (2024), pp. 2746–2765.
  • J. Manafian, M.A.S. Murad, A. Alizadeh, and S. Jafarmadar, M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation, Eur. Phys. J. Plus. 135(2) (2020), pp. 1–20.
  • M. Mirzazadeh, A. Sharif, M.S. Hashemi, A. Akgül, and S.M. El Din, Optical solitons with an extended (3+1)-dimensional nonlinear conformable Schrödinger equation including cubic–quintic nonlinearity, Results Phys. 49 (2023), p. 106521.
  • M.A.S. Murad, Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients, Appl. Math. J. Chin. Univ. 37(3) (2022), pp. 404–414.
  • M.A.S. Murad, New optical soliton solutions for time-fractional Kudryashov's equation in optical fiber, Optik (Stuttg). 283 (2023), p. 170897.
  • M.A.S. Murad, H.F. Ismael, T.A. Sulaiman, N.A. Shah, and J.D. Chung, Higher-order time-fractional Sasa–Satsuma equation: Various optical soliton solutions in optical fiber, Results Phys. 55 (2023), p. 107162.
  • N.Z. Petrović and M. Bohra, General Jacobi elliptic function expansion method applied to the generalized (3+1)-dimensional nonlinear Schrödinger equation, Opt. Quantum Electron. 48(8) (2016), pp. 1–8.
  • A.D. Polyanin and V.G. Sorokin, Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions, J. Phys. Conf. Ser. 937(1) (2017), pp. 1–11.
  • A.D. Polyanin and V.G. Sorokin, Nonlinear reaction-diffusion equations with delay: Some theorems, test problems, exact and numerical solutions, J. Phys. Conf. Ser. 937(1) (2017), pp. 20–38.
  • R. Radhakrishnan, A. Kundu, and M. Lakshmanan, Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media, Phys. Rev. E 60(3) (1999), pp. 3314–3323.
  • S.T.R. Rizvi, A.R. Seadawy, A. Bashir, A. Nimra, Lie symmetry analysis and conservation laws with soliton solutions to a nonlinear model related to chains of atoms, Opt. Quantum Electron. 55(9) (2023), p. 762.
  • N.H. Tuan, H. Mohammadi, and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solit. Fractals 140 (2020), p. 110107.
  • G. Wang, A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: derivation, symmetries and conservation laws, Appl. Math. Lett. 113 (2021), p. 106768.
  • G. Wang, X. Wang, F. Guan, and H. Song, Exact solutions of an extended (3+1)-dimensional nonlinear Schrödinger equation with cubic-quintic nonlinearity term, Optik (Stuttg). 279 (2023), p. 170768.
  • G. Wang, X. Wang, and T. Huang, Explicit soliton solutions of (3+1)-dimensional nonlinear Schrödinger equation with time variable coefficients, Optik (Stuttg). 275 (2023), p. 170628.
  • A.-M. Wazwaz, M. Abu Hammad, and S.A. El-Tantawy, Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes, Optik (Stuttg). 270 (2022), p. 170043.
  • S.-Y. Xu, Q. Zhou, and W. Liu, Prediction of soliton evolution and equation parameters for NLS–MB equation based on the phPINN algorithm, Nonlinear Dyn. 111(19) (2023), pp. 18401–18417.
  • Y. Zhong, H. Triki, and Q. Zhou, Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential, Commun. Theor. Phys. 75(2) (2023), p. 025003.
  • Y. Zhong, H. Triki, and Q. Zhou, Bright and kink solitons of time-modulated cubic–quintic–septic–nonic nonlinear Schrödinger equation under space-time rotated PT-symmetric potentials, Nonlinear Dyn. 112(2) (2024), pp. 1349–1364.
  • Q. Zhou, Influence of parameters of optical fibers on optical soliton interactions, Chin. Phys. Lett. 39(1) (2022), p. 010501.
  • Q. Zhou, H. Triki, J. Xu, Z. Zeng, W. Liu, and A. Biswas, Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos Solit. Fractals 160(2) (2022), p. 112198.
  • Q. Zhou, Y. Zhong, H. Triki, Y. Sun, S. Xu, W. Liu, and A. Biswas, Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chin. Phys. Lett. 39(4) (2022), p. 044202.
  • Q. Zhou, Z. Huang, Y. Sun, H. Triki, W. Liu, and A. Biswas, Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlinear Dyn. 111(6) (2023), pp. 5757–5765.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.