18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kaczmarz-type methods for solving matrix equations

, , &
Received 22 May 2023, Accepted 17 Jun 2024, Published online: 01 Jul 2024

References

  • A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, USA, 2003.
  • T.A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Softw.38 (2011), pp. 1–25.
  • A. Dax, Kaczmarz's anomaly: A surprising feature of Kaczmarz's method, Linear Algebra Appl. 662 (2023), pp. 136–162.
  • K. Du, Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms, Numer. Linear Algebra Appl. 26 (2019), pp. 1–14.
  • T.N.E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), pp. 15–22.
  • S. Hadjiantoni and G. Loizou, Numerical strategies for recursive least squares solutions to the matrix equation AX = B, Int. J. Comput. Math. 100 (2023), pp. 497–510.
  • Z. Hailin, An iterative algorithm to the least squares problem of AX = B over linear subspace, Math. Numer. Sin. 45 (2023), pp. 93–108.
  • S. Kaczmarz, Angena¨herte auflo¨sung von systemen linearer gleichungen, Bull. Int. Acad. Polon. Sci. Lett. 35 (1937), pp. 335–357.
  • D. Leventhal and A.S. Lewis, Randomized methods for linear constraints: Convergence rates and conditioning, Math. Oper. Res. 35 (2010), pp. 641–654.
  • X. Liu, Hermitian and non-negative definite reflexive and anti-reflexive solutions to AX = B, Int. J. Comput. Math. 95 (2018), pp. 1666–1671.
  • A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl. 36 (2015), pp. 1590–1604.
  • P.J. Maher, Some operator inequalities concerning generalized inverses, Illinois J. Math. 34 (1990), pp. 503–514.
  • H. Masoud, Least squares solution of the linear operator equation, J. Optim. Theory Appl. 170 (2016), pp. 205–219.
  • M.Z. Nashed, Generalized inverses and applications, in Proceedings of an Advanced Seminar, Academic Press, The University of Wisconsin-Madison, New York, 1976.
  • R. Penrose, A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc. 51 (1955), pp. 406–413.
  • C. Popa, Convergence rates for Kaczmarz-type algorithms, Numer. Algorithms 79 (2018), pp. 1–17.
  • S.G. Shafiei and M. Hajarian, Developing Kaczmarz method for solving Sylvester matrix equations, J. Franklin Inst. 359 (2022), pp. 8991–9005.
  • P.S. Stanimirovic´, M. Dijana, and Y. Wei, Least squares properties of generalized inverses, Commun. Math. Res. 37 (2021), pp. 421–447.
  • T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl. 15 (2009), pp. 262–278.
  • S.J. Wright, Coordinate descent algorithms, Math. Program. 151 (2015), pp. 3–34.
  • N.C. Wu, C.Z. Liu, and Q. Zuo, On the Kaczmarz methods based on relaxed greedy selection for solving matrix equation AXB = C, J. Comput. Appl. Math. 413 (2022), pp. 114374.
  • Y. Yuan, Least square solutions to the matrix equations AX = B and XC = D, Appl. Math. Comput.216 (2010), pp. 3120–3125.
  • A. Zouzias and N.M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl. 34 (2013), pp. 773–793.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.