76
Views
1
CrossRef citations to date
0
Altmetric
Section B

A note on solving linear Diophantine systems by using L3-reduction algorithm

Pages 883-896 | Received 23 Sep 2006, Accepted 26 Sep 2007, Published online: 23 Apr 2009

References

  • Aardal , K. , Hurkans , C. A.J. and Lenstra , A. K. 2000 . Solving a systems of linear Diophantine equations with lower and upper bounds on the variables . Math. Oper. Res. , 3 : 427 – 442 .
  • Barnette , S. and Pace , I. S. 1974 . Efficient algorithms for linear systems calculations: Part I–Smith form and common divisor of polynomial matrices . Int. J. Systems Sci. , 5 : 403 – 411 .
  • Blankinship , W. A. 1966 . Algorithm 287, matrix triangulation with integer arithmetic [F1] . Commun. ACM , 82 : 513
  • Blankinship , W. A. 1966 . Algorithm 288, solution of simultaneous linear Diophantine equations . Commun. ACM , 82 : 514
  • Bradley , G. H. 1971 . Algorithms for Hermite and Smith normal matrices and linear Diophantine equations . Math. Comp. , 25 : 897 – 907 .
  • Chou , T. J. and Collins , E. E. 1982 . Algorithms for the solutions of systems of linear Diophantine equations . SIAM J. Comput. , 11 : 686 – 708 .
  • Clausen , M. and Fortenbacher , A. 1989 . Efficient solution of Diophantine equations . J. Symbolic Comput. , 8 : 201 – 216 .
  • Collins , G. E. 1974 . The computing time of the Euclidean algorithm . SIAM J. Comput. , 3 : 1 – 10 .
  • Contejean , E. and Devie , H. 1994 . An efficient algorithm for solving systems of Diophantine equations . Inform. Comput. , 1 : 143 – 172 .
  • Dixon , J. D. 1970 . The number of steps in the Euclidean algorithm . J. Number Theory , 2 : 414 – 422 .
  • Esmaeili , H. 2005 . How can we solve a linear Diophantine equation by the basis reduction algorithm . Int. J. Comput. Math. , 82 : 1227 – 1234 .
  • Esmaeili , H. , Mahdavi-Amiri , N. and Spedicato , E. 2001 . A class of ABS algorithms for Diophantine linear systems . Numer. Math. , 90 : 101 – 115 .
  • Grötschel , M. , Lovász , L. and Schrijver , A. , eds. 1993 . Geometric Algorithms and Combinatorial Optimization , New York : Springer-Verlag .
  • Havas , G. , Majewski , B. S. and Matthews , K. R. 1988 . Extended GCD and hermite normal form algorithms via lattice basis reduction . Experimental Math. , 7 : 125 – 135 .
  • Hlawka , E. , Schoissengeier , J. and Taschner , R. 1991 . Geometric and Analytic Number Theory , Berlin : Springer .
  • Kallen , W. V.D. 2000 . Complexity of the Havas, Majewski, Matthews LLL Hermite normal form algorithm . J. Symbolic Comput. , 11 : 1 – 10 .
  • Kannan , R. and Bachem , A. 1979 . Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix . SIAM J. Comput. , 8 : 499 – 507 .
  • The Art of Computer Programming . 1969 . Seminumerical Algorithms , Edited by: Knuth , D. E. Vol. 2 , Reaching, MA : Addison–Wesley .
  • Lenstra , A. K. , Lenstra , H. W. and Lovăsz , L. 1982 . Factoring polynomials with rational coefficients . Math. Ann. , 261 : 515 – 534 .
  • Rosser , J. B. 1941 . A note on the linear Diophantine equation . Amer. Math. Monthly. , 48 : 662 – 666 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.