1,281
Views
102
CrossRef citations to date
0
Altmetric
Original Articles

Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques

&
Pages 1150-1162 | Received 12 Nov 2013, Accepted 07 Dec 2014, Published online: 09 Jan 2015

References

  • Bartoszewicz, A. (1996). Time-varying sliding modes for second-order systems. IEE Proceedings-Control Theory and Applications, 143(5), 455–462.
  • Bhat, S.P., & Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38(3), 751–766.
  • Chen, Y.P., & Lo, S.C. (1993). Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1328–1333.
  • Chen, Z., & Huang, J. (2009). Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Transactions on Automatic Control, 54(3), 600–605.
  • Choi, S.B., Park, D.W., & Jayasuriya, S. (1994). A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, 30(5), 899–904.
  • Cong, B.L., Liu, X.D., & Chen, Z. (2010). Exponential time-varying sliding mode control for large angle attitude eigenaxis maneuver of rigid spacecraft. Chinese Journal of Aeronautics, 23(4), 447–453.
  • Ding, S.H., & Li, S.H. (2009). Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerospace Science and Technology, 13(4-5), 256–265.
  • Dodds, S.J., & Walker, A.B. (1991). Sliding-mode control system for the three-axis attitude control of rigid-body spacecraft with unknown dynamics parameters. International Journal of Control, 54(4), 737–761.
  • Du, H., Li, S., & Qian, C. (2011). Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 56(11), 2711–2717.
  • Du, H.B., & Li, S.H. (2012). Semi-global finite-time attitude stabilization by output feedback for a rigid spacecraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(12), 1881–1891.
  • Feng, Y., Yu, X., & Han, F.L. (2013). On nonsingular terminal sliding-mode control of nonlinear systems. Automatica, 49(6), 1715–1722.
  • Feng, Y., Yu, X., & Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 28(11), 2159–2167.
  • Gao, W., & Hung, J.C. (1993). Variable structure control of nonlinear systems: A new approach. IEEE Transactions on Industrial Electronics, 40(1), 45–55.
  • Hu, Q.L., & Xiao, B. (2011). Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness. Journal of Guidance Control and Dynamics, 34(3), 927–932.
  • Hu, Q.L., & Xiao, B. (2013). Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft. International Journal of Systems Science, 44(12), 2273–2286.
  • Jin, E.D., & Sun, Z.W. (2008). Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 12(4), 324–330.
  • Jin, Y.Q., Liu, X.D., Qiu, W., & Hou, C.Z. (2008). Time-varying sliding mode controls in rigid spacecraft attitude tracking. Chinese Journal of Aeronautics, 21(4), 352–360.
  • Jin, Y.Q., Liu, X.D., Qiu, W., & Hou, C.Z. (2010). Time-varying sliding mode control for a class of uncertain MIMO nonlinear system subject to control input constraint. Science China F: Information Sciences, 53(1), 89–100.
  • Li, S., Ding, S., & Li, Q. (2009). Global set stabilisation of the spacecraft attitude using finite-time control technique. International Journal of Control, 82(5), 822–836.
  • Li, S.H., Wang, Z., & Fei, S.M. (2011). Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 15(3), 193–195.
  • Lizarralde, F., & Wen, J.T. (1996). Attitude control without angular velocity measurement: A passivity approach. IEEE Transactions on Automatic Control, 41(3), 468–472.
  • Lo, S.C., & Chen, Y.P. (1995). Smooth sliding-mode control for spacecraft attitude tracking maneuvers. Journal of Guidance Control and Dynamics, 24(6), 1345–1349.
  • Lu, K.F., & Xia, Y.Q. (2013a). Adaptive attitude tracking control for rigid spacecraft with finite time convergence. Automatica, 49(12), 3591–3599.
  • Lu, K.F., & Xia, Y.Q. (2013b). Finite-time fault tolerant control for rigid spacecraft with actuator saturations. IET Control Theory and Applications, 7(11), 1529–1539.
  • Man, Z., & Yu, X. (1997). Terminal sliding mode control of mimo linear systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(11), 1065–1070.
  • Rosier, L. (1992). Homogeneous Lyapunov function for homogeneous continuous vector field. Systems and Control Letters, 19(4), 467–473.
  • Schaub, H., Akella, M.R., & Junkins, J.L. (2001). Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. Journal of Guidance, Control and Dynamics, 24(1), 95–100.
  • Tsiotras, P. (1996). Stabilization and optimality results for the attitude control problem. Journal of Guidance, Control and Dynamics, 19(4), 772–779.
  • Wong, H., de-Queiroz, M.S., & Kapila, V. (2001). Adaptive tracking control using synthesized velocity from attitude measurements. Automatica, 37(6), 947–953.
  • Wu, B.L., Wang, D.W., & Poh, E.K. (2011). Decentralized robust adaptive control for attitude synchronization under directed communication topology. Journal of Guidance, Control, and Dynamics, 34(4), 1276–1282.
  • Wu, Y., Yu, X., & Man, Z. (1998). Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters, 34(5), 281–288.
  • Xia, Y., & Jia, Y. (2003). Robust sliding mode control of uncertain time-delay systems: An LMI approach. IEEE Transactions on Automatic Control, 48(6), 1086–1092.
  • Xiao, B., Hu, Q.L., & Shi, P. (2013). Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness. IEEE Transactions on Control Systems Technology, 21(6), 2251–2263.
  • Xing, G., & Parvez, S.A. (2001). Nonlinear attitude state tracking control for spacecraft. Journal of Guidance, Control and Dynamics, 24(3), 624–626.
  • Yu, S., Yu, X., Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), 1957–1964.
  • Zhao, D., Li, S.Y., & Gao, F. (2009). A new terminal sliding mode control for robotic manipulators. International Journal of Control, 82(10), 1804–1813.
  • Zhao, D., & Zou, T. (2012). A finite-time approach to formation control of multiple mobile robots with terminal sliding mode. International Journal of Systems Science, 43(11), 1998–2014.
  • Zhao, L., Jia, Y.M., & Matsuno, F. (2013). Adaptive time-varying sliding mode control for autonomous spacecraft rendezvous. In Proceeding of the 52nd IEEE conference on decision and control (pp. 5504–5509). Florence: IEEE.
  • Zhu, F., Xia, Y.Q., & Fu, M.Y. (2011). Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686–702.
  • Zou, A.M., Kumar, K.D., Hou, Z.G., & Liu, X. (2011). Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 41(4), 950–963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.