364
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dynamics of the N-link pendulum: a fractional perspective

&
Pages 1192-1200 | Received 18 May 2015, Accepted 23 Nov 2015, Published online: 11 Jan 2016

References

  • Abramowitz, M., & Stegun, I.A. (Eds.). (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York, NY: Dover.
  • Ali, F., Motoi, N., Heerden, K., & Kawamura, A. (2013). Ground reaction force reduction of biped robot for walking along a step with dual length linear inverted pendulum method. Journal of Robotics and Mechatronics, 25(1), 220–231.
  • Arias, A., Gutierrez, E., & Pozo, E. (1990). Binomial theorem applications in matrix fractional powers calculation. Transportation Engineering, 18(1–2), 75–79.
  • Astin, J. (1967). Extension of the formula for the Nth power of a square matrix to negative and fractional values of N. The Mathematical Gazette, 51(377), 228–232.
  • Awrejcewicz, J., Supeł, B., Lamarque, C.-H., Kudra, G., Wasilewski, G., & Olejnik, P. (2008). Numerical and experimental study of regular and chaotic motion of triple physical pendulum. International Journal of Bifurcation and Chaos, 18(10), 2883–2915.
  • Baker, G.L., & Blackburn, J.A. (2005). The pendulum: A case study in physics. Oxford: Oxford University Press.
  • Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J.J. (2012). Fractional calculus: Models and numerical methods (Vol. 3). Singapore: World Scientific.
  • Barin, K. (1992). Dynamic posturography: Analysis of error in force plate measurement of postural sway. Engineering in Medicine and Biology Magazine, IEEE, 11(4), 52–56.
  • Bini, D., Higham, N., & Meini, B. (2005). Algorithms for the matrix pth root. Numerical Algorithms, 39(4), 349–378.
  • Boubaker, O. (2013). The inverted pendulum benchmark in nonlinear control theory: A survey. International Journal of Advanced Robotic Systems, 10(233), 1–9.
  • Brisilla, R., & Sankaranarayanan, V. (2015). Nonlinear control of mobile inverted pendulum. Robotics and Autonomous Systems, 70, 145–155.
  • Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., & Monagan, M.B. (1986). A tutorial introduction to Maple. Journal of Symbolic Computation, 2(2), 179–200.
  • Charitos, T., de Waal, P.R., & van der Gaag, L.C. (2008). Computing short-interval transition matrices of a discrete-time Markov chain from partially observed data. Statistics in Medicine, 27(6), 905–921.
  • de Oliveira, E.C., & Machado, J. (2014). A review of definitions for fractional derivatives and integrals. Mathematical Problems in Engineering, 2014, 238459.
  • Dorčák, L. (1994). Numerical models for the simulation of the fractional-order control systems (Report No. UEF-04-94). Kosice, Slovak Republic: The Academy of Science, Institute of Experimental Physics. p. 1–112.
  • Fiori, S. (2008). Leap-frog-type learning algorithms over the Lie group of unitary matrices. Neurocomputing, 71(10), 2224–2244.
  • Gmiterko, A., & Grossman, M. (2010). N-link inverted pendulum modeling. In T. Brezina & R. Jablonski (Eds.), Recent advances in mechatronics (pp. 151–156). Berlin Heidelberg: Springer-Verlag.
  • Hedrih, K.R.S. (2008). Dynamics of multi-pendulum systems with fractional order creep elements. Journal of Theoretical and Applied Mechanics, 46(3), 483–509.
  • Higham, N.J. (2008). Functions of matrices: Theory and computation. Philadelphia, PA: SIAM.
  • Higham, N.J., & Lin, L. (2011). A Schur-Padé algorithm for fractional powers of a matrix. SIAM Journal on Matrix Analysis and Applications, 32(3), 1056–1078.
  • Housner, G.W. (1963). The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2), 403–417.
  • Ionescu, C.M. (2013). The human respiratory system: An analysis of the interplay between anatomy, structure, breathing and fractal dynamics. London: Springer-Verlag.
  • Israel, R.B., Rosenthal, J.S., & Wei, J.Z. (2001). Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings. Mathematical Finance, 11(2), 245–265.
  • Jadlovská, S., Sarnovskỳ, J., Vojtek, J., & Vošček, D. (2015). Advanced generalized modelling of classical inverted pendulum systems. In P. Sinčák, P. Hartono, M. Virčíková, J. Vaščák, & R. Jakša (Eds.), Emergent trends in robotics and intelligent systems (pp. 255–264). Switzerland: Springer.
  • Kenneth, M., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York, NY: Wiley.
  • Kurdekar, V., & Borkar, S. (2013). Inverted pendulum control: A brief overview. International Journal of Modern Engineering Research (IJMER), 3(5), 2924–2927.
  • Larcombe, P. (1992). On the control of a two-dimensional multi-link inverted pendulum: The form of the dynamic equations from choice of co-ordinate system. International Journal of Systems Science, 23(12), 2265–2289.
  • Lewis, F.L., Dawson, D.M., & Abdallah, C.T. (2004). Robot manipulator control: Theory and practice. New York, NY: Marcel Dekker.
  • Lobas, L. (2005). Generalized mathematical model of an inverted multi-link pendulum with follower force. International Applied Mechanics, 41(5), 566–572.
  • Lopes, A.M., & Machado, J. (2014). Fractional order models of leaves. Journal of Vibration and Control, 20(7), 998–1008.
  • Lopes, A.M., Machado, J., Pinto, C.M., & Galhano, A.M. (2013). Fractional dynamics and MDS visualization of earthquake phenomena. Computers & Mathematics with Applications, 66(5), 647–658.
  • Luo, Y., & Chen, Y. (2012). Fractional order motion controls. Chichester: John Wiley & Sons.
  • Machado, J., & de Carvalho, J. (1989). Engineering design of a multirate nonlinear controller for robot manipulators. Journal of robotic systems, 6(1), 1–17.
  • Machado, J., de Carvalho, J., & Galhano, A. (1993). Analysis of robot dynamics and compensation using classical and computed torque techniques. IEEE Transactions on Education, 36(4), 372–379.
  • Machado, J., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 16(3), 1140–1153.
  • Machado, J., Lopes, A.M., Duarte, F.B., Ortigueira, M.D., & Rato, R.T. (2014). Rhapsody in fractional. Fractional Calculus and Applied Analysis, 17(4), 1188–1214.
  • Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. Singapore: World Scientific.
  • Mezić, I. (2006). On the dynamics of molecular conformation. Proceedings of the National Academy of Sciences, 103(20), 7542–7547.
  • Mitra, S.K., & Kuo, Y. (2006). Digital signal processing: A computer-based approach (Vol. 2). New York, NY: McGraw-Hill.
  • Moore, H. (2014). MATLAB for engineers. Upper Saddle River, NJ: Prentice Hall Press.
  • Papoulis, A. (1977). Signal analysis (Vol. 191). New York, NY: McGraw-Hill.
  • Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Berlin Heidelberg: Springer-Verlag.
  • Podlubny, I. (1999). Fractional differential equations. San Diego, CA: Academic Press.
  • Rivas-Cambero, I., & Sausedo-Solorio, J.M. (2012). Dynamics of the shift in resonance frequency in a triple pendulum. Meccanica, 47(4), 835–844.
  • Schiehlen, W. (2014). On the historical development of human walking dynamics. In E. Stein (ed.), The history of theoretical, material and computational mechanics – mathematics meets mechanics and engineering (pp. 101–116). Berlin Heidelberg: Springer-Verlag.
  • Sheng, H., Chen, Y., & Qiu, T. (2011). Fractional processes and fractional-order signal processing: techniques and applications. London: Springer-Verlag.
  • Silva, M.F., Machado, J., & Lopes, A. (2004). Fractional order control of a hexapod robot. Nonlinear Dynamics, 38(1–4), 417–433.
  • Slotine, J.-J.E. (1985). The robust control of robot manipulators. The International Journal of Robotics Research, 4(2), 49–64.
  • Slotine, J.-J.E., & Li, W. (1991). Applied nonlinear control (Vol. 60). Englewood Cliffs, NJ: Prentice-Hall.
  • Spong, M.W., & Vidyasagar, M. (2008). Robot dynamics and control. New York, NY: John Wiley & Sons.
  • Valério, D., Trujillo, J.J., Rivero, M., Machado, J., & Baleanu, D. (2013). Fractional calculus: A survey of useful formulas. The European Physical Journal Special Topics, 222(8), 1827–1846.
  • Vesely, F.J. (2013). Of pendulums, polymers, and robots: Computational mechanics with constraints. American Journal of Physics, 81(7), 537–544.
  • Waugh, F.V., & Abel, M.E. (1967). On fractional powers of a matrix. Journal of the American Statistical Association, 62(319), 1018–1021.
  • Wolfram, S. (2000). The mathematica book. New York, NY: Cambridge University Press and Wolfram Research.
  • Yu, P., & Bi, Q. (1998). Analysis of non-linear dynamics and bifurcations of a double pendulum. Journal of Sound and Vibration, 217(4), 691–736.
  • Zayas, V.A., Low, S.S., & Mahin, S.A. (1990). A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 6(2), 317–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.