319
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique: application to SEIG wind turbine control system

, &
Pages 855-872 | Received 12 Jan 2016, Accepted 10 Jul 2016, Published online: 01 Sep 2016

References

  • Ahmed-Ali, T., Kenne, G., & Lamnabhi-Lagarrigue, F. (2009). Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer. Neurocomputing, 72, 1611–1620.
  • Ahmed-Ali, T., Lamnabhi-Lagarrigue, F., & Ortega, R. (1999). A globally-stable adaptive indirect field-oriented controller for current-fed induction motors. International Journal of Control, 72, 996–1005.
  • Akatsu, K., & Kawamura, A. (2000). On-line rotor resistance estimation using the transient state under the speed sensorless control of induction motor. IEEE Transaction on Power Electronics, 15, 553–560.
  • Barut, M., Bogosyan, S., & Gokasan, M. (2005). Speed sensorless direct torque control of induction motors with rotor resistance estimation. Energy Conversion and Management, 46, 335–349.
  • Beltran, B., Ahmed-Ali, T., & Benbouzid, M. (2009). High-order sliding mode control of variable speed wind Turbines. IEEE Transactions on Energy Conversion, 56, 3314–3321.
  • Bouafassa, A., Rahmani, L., & Mekhilef, S. (2015). Design and real time implementation of single phase boost power factor correction converter. ISA Transactions, 55, 267–274.
  • Castaldi, P., Geri, W., Montanari, M., & Tilli, A. (2005). A new adaptive approach for on-line parameter and state estimation of induction motors. Control Engineering Practice, 13, 81–94.
  • Castillo, B., Gennaro, S.D., Loukianov, A., & Rivera, J. (2007). Robust nested sliding mode regulation with application to induction motors. Proceedings of the 2007 American control conference, New York City, USA (pp. 5242–5247).
  • Chen, C., & Billings, S.A. (1992). Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control, 56, 319–346.
  • Chen, C., Billings, S.A., Cowan, C.F.N., & Grant, P.M. (1990). Practical identification of NARMAX models using radial basis functions. International Journal of Control, 52, 1327–1350.
  • Emelyanov, S.V., Korovin, S.K., & Levantovsky, L.V. (1986a). Higher order sliding modes in the binary control systems. Soviet Physics, Doklady, 31, 291–293.
  • Emelyanov, S.V., Korovin, S.K., & Levantovsky, L.V. (1986b). Second order sliding modes in controlling uncertain systems. Soviet Journal of Computer and System Science, 24, 63–68.
  • Fei, J., & Ding, H. (2012). Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dynamics, 70, 1563–1573.
  • Fridman, L., & Levant, A. (2002). Sliding mode control in engineering. Higher order sliding modes, New York, NY: Marcel Dekker.
  • Ge, S.S., Hang, C.C., & Zhang, T. (1999). A direct method for robust adaptive nonlinear control with guaranteed transient performance. Systems and Control Letters, 37, 275–284.
  • Ge, S., & Wang, C. (2002). Direct adaptive NN control of a class of nonlinear systems. IEEE Trasaction on Neural Networks, 13, 214–221.
  • Haque, M., Negnevitsky, M., & Muttaqi, K. (2008). A novel control strategy for a variable speed wind turbine with a permanent magnet synchronous generator. 2008 IEEE Industry Applications Society annual meeting (pp. 1–8), University of Wollongong, Wollongong, NSW.
  • Hua, C., Yu, C., & Guan, X. (2014). Neural network observer-based networked control for a class of nonlinear systems. Neurocomputing, 133, 103–110.
  • Jaramillo-Lopez, F., Kenne, G., & Lamnabhi-Lagarrigue, F. (2016). A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renewable Energy, 86, 38–48.
  • Kenne, G., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F., & Arzandé, A. (2008). Nonlinear systems time-varying parameter estimation: Application to induction motors. Electric Power Systems Research, 78, 1881–1888.
  • Kenné, G., & Lamnabhi-Lagarrigue, F. (2012). Comparative study of two robust online rotor resistance estimators for induction machine adaptive control. Proceeding of the IEEE international conference on industrial technology, special session paper, Athens, Greece, 19–21 March (pp. 437–442).
  • Kenne, G., Simo, R.S., Lamnabhi-Lagarrigue, F., Arzande, A., & Vannier, J.C. (2010). An online simplified rotor resistance estimator for induction motors. IEEE Transaction on Control Systems Technology, 18, 1188–1194.
  • Koubaa, Y. (2006a). Application of least-squares techniques for induction motor parameters estimation. Mathematical and Computer Modelling of Dynamical Systems, 12, 363–375.
  • Koubaa, Y. (2006b). Asynchronous machine parameters estimation using recursive method. Simulation Modelling Practice and Theory, 14, 1010–1021.
  • Leonhard, W. (1984). Control of electric drives. New York: Springer Verlag.
  • Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34, 379–384.
  • Levant, A., & Alelishvili, L. (2007). Integral high-order sliding modes. IEEE Transactions on Automatic Control, 52, 1278–1282.
  • Liu, J. (2013). Radial basis function (RBF) neural network control for mechanical systems, design, analysis and matlab simulation. Heidelberg: Springer.
  • Louze, L., Nemmour, A.L., Khezzar, A., Hacil, M.E., & Boucherma, M. (2009). Cascade sliding mode controller for self-excited induction generator. Revue des Energies Renouvelables, 12, 617–626.
  • Lu, Y.S., & Chen, J.S. (1995). Design of a perturbation estimator using the theory of variable-structure systems and its application to magnetic levitation systems. IEEE Transactions on Industrial Electronics, 42, 281–289.
  • Luenberger, D.G. (1984). Linear and nonlinear programming. Boston, MA: Addison-Wesley.
  • Mansour, M., Nejib Mansouri, M., & Faouzi Mimouni, M. (2011). Comparative performance of fixed-speed and variable-speed wind turbine generator systems. Journal of Mechanics Engineering and Automation, 1, 74–81.
  • Marino, R., Peresada, S., & Tomei, P. (1995). Exponentially convergent rotor resistance estimation for induction motors. IEEE Transaction on Industrial Electronics, 42, 508–515.
  • Marino, R., Peresada, S., & Tomei, P. (2000). On-line stator and rotor resistance estimation for induction motors. IEEE Transactions on Control Systems Technology, 8, 570–579.
  • Marino, R., Peresada, S., & Verrelli, C.M. (2005). Adaptive control for speed-sensorless induction motors with uncertain load torque and rotor resistance. International Journal of Adaptive Control and Signal Processing, 19, 661–685.
  • Marino, R., & Tomei, P. (1995). Nonlinear adaptive design: Geometric, adaptive, and robust. London: Prentice-Hall.
  • Mezouar, A., Fellah, M.K., & Hadjeri, S. (2008). Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach. Simulation Modelling Practice and Theory, 16, 1323–1336.
  • Mezouar, A., Fellah, M.K., Hadjeri, S., & Sahali, Y. (2006). Adaptive speed sensorless vector control of induction motor using singularly perturbed sliding mode observer. IEEE Industrial Electronics-IECON 2006 (pp. 932–939), Paris, France.
  • Pai, M.C. (2014). Dynamic output feedback RBF neural network sliding mode control for robust tracking and model following. Nonlinear Dynamics, 79, 1023–1033.
  • Picardi, C., & Scibilia, F. (2006). Sliding-mode observer with resistances or speed adaptation for field-oriented induction motor drives. IEEE Industrial Electronics-IECON 2006 (pp. 1481–1486), Paris, France.
  • Roncero-Sánchez, P., García-Cerraba, A., & Feliu-Batlle, V. (2007). Rotor resistance estimation for induction machines with indirect field-orientation. Control Engineering Practice, 15, 1119–1133.
  • Seixas, V.M.M., & Melício, R. (2014). Fifth harmonic and sag impact on PMSG wind turbines with a balancing strategy for capacitor voltages. Energy Conversion and Management, 79, 721–730.
  • Seshagiri, S., & Khalil, H. (2000). Output feedback control of nonlinear systems using RBF neural networks. IEEE Trasaction on Neural Networks, 11, 69–79.
  • Seyoum, D., Rahman, M.F., & Grantham, C. (2003). Inverter supplied voltage control system for an isolated induction generator driven by a wind turbine. 38th IAS annual meeting conference record of the industry applications (Vol. 1, pp. 568–575). IEEE Xplore.
  • Sivakami, P., Karthigaivel, R., & Selvakumaran, S. (2013). Voltage control of variable speed induction generator using PWM converter. International Journal of Engineering and Advanced Technology, 2, 2249–8958.
  • Slootweg, J., de Haan, S., Polinder, H., & Kling, W. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on Power Systems, 18, 144–151.
  • Thumati, B., & Jagannathan, S. (2009). Neural network control of a class of nonlinear discrete time systems with asymptotic stability guarantees. American control conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 10–12 June (pp. 2934–2939).
  • Wang, K., Chiasson, J., Bodson, M., & Tolbert, L.M. (2007). An online rotor time constant estimator for the induction machine. IEEE Transactions on Control Systems Technology, 15, 339–348.
  • Yoo, D.S., & Chung, M.J. (1992). A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties. IEEE Transaction on Automatic Control, 37, 860–864.
  • Zhu, Q., Fei, S., Zhang, T., & Li, T. (2008). Adaptive RBF neural-networks control for a class of time-delay nonlinear systems. Neurocomputing, 71, 3617–3624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.