306
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Robust attitude tracking control for a rigid spacecraft under input delays and actuator errors

ORCID Icon, , &
Pages 1183-1195 | Received 31 Aug 2016, Accepted 20 Sep 2017, Published online: 14 Nov 2017

References

  • Ailon, A. , Segev, R. , & Arogeti, S . (2004). A simple velocity-free controller for attitude regulation of a spacecraft with delayed feedback. IEEE Transactions on Automatic Control , 49 (1), 125–130.
  • Bharadwaj, S. , Osipchuk, M. , Mease, K. D. , & Park, F. C. (1998). Geometry and inverse optimality in global attitude stabilization. Journal of Guidance, Control, and Dynamics , 21 (6), 930–939.
  • Chunodkar, A. A. , & Akella, M. R . (2011). Attitude stabilization with unknown bounded delay in feedback control implementation. Journal of Guidance, Control, and Dynamics , 34 (2), 533–542.
  • Davila, J. , Fridman, L. , & Levant, A. (2005). Second-order sliding-mode observer for mechanical systems. IEEE Transactions on Automatic Control , 50 (11), 1785–1789.
  • Fortescue, P. , Swinerd, G. , & Stark, J. (Eds.) . (2011). Spacecraft systems engineering (4th ed.). UK: John Wiley & Sons.
  • Ghaoui, L. E. , & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications , 18 (4), 1035–1064.
  • Ghaoui, L. E. , Oustry, F. , & Lebret, H . (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization , 9 (1), 33–52.
  • Haddad, W. M. , & Chellaboina, V . (2008). Nonlinear dynamical systems and control: A Lyapunov-based approach . NJ: Princeton University Press.
  • Higham, N. J . (2002). Accuracy and stability of numerical algorithms (2nd ed.). England: SIAM.
  • Horri, N. M. , Palmer, P. , & Hodgart, S. (2012). Practical implementation of attitude-control algorithms for an underactuated satellite. Journal of Guidance, Control, and Dynamics , 35 (1), 40–45.
  • Hu, Q. , Xiao, B. , Wang, D. , & Poh, E. K. (2013). Attitude control of spacecraft with actuator uncertainty. Journal of Guidance, Control, and Dynamics , 36 (6), 1771–1776.
  • Jia, Q. , Chen, W. , Zhang, Y. , & Li, H. (2016). Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers. International Journal of Systems Science , 47 (16), 3749–3761.
  • Johansen, T. A. , & Fossen, T. I . (2013). Control allocation-A survey. Automatica , 49 (5), 1087–1103.
  • Kaplan, C. (2006). LEO satellites: Attitude determination and control components; some linear attitude control techniques ( Master's thesis). Middle East Technical University, Ankara. Retrieved from https://etd.lib.metu.edu.tr/upload/12607189/index.pdf
  • Khalil, H. K . (2002). Nonlinear systems (2nd ed.). NJ: Prentice Hall.
  • Lehman, B. , & Shujaee, K . (1994). Delay independent stability conditions and decay estimates for time-varying functional differential equations. IEEE Transactions on Automatic Control , 39 (8), 1673–1676.
  • Lim, H.-C. , & Bang, H. (2009). Adaptive control for satellite formation flying under thrust misalignment. Acta Astronautica , 65 (1–2), 112–122.
  • Löfberg, J . (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Hara, S . (Ed.) IEEE international symposium on computer aided control systems design (pp. 284–289). Taipei: IEEE.
  • Lu, K. , Xia, Y. , Fu, M. , & Yu, C. (2016). Adaptive finite-time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints. International Journal of Robust and Nonlinear Control , 26 (1), 28–46.
  • Malisoff, M. , & Mazenc, F . (2009). Constructions of strict Lyapunov functions . London: Springer-Verlag.
  • Nazari, M. , Butcher, E. A. , & Schaub, H. (2013). Spacecraft attitude stabilization using nonlinear delayed multiactuator control and inverse dynamics. Journal of Guidance, Control, and Dynamics , 36 (5), 1440–1452.
  • Pong, C. M. (2014). High-precision pointing and attitude estimation and control algorithms for hardware-constrained spacecraft ( Doctoral dissertation). Cambridge: Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/90732
  • Schaub, H. , & Junkins, J. L . (2009). Analytical mechanics of space systems (2nd ed.). Reston, VA: AIAA.
  • Sidi, M. J . (1997). Spacecraft dynamics and control: A practical engineering approach . Cambridge: Cambridge University Press.
  • Trégouët, J. F. , Arzelier, D. , Peaucelle, D. , Pittet, C. , & Zaccarian, L. (2015). Reaction wheels desaturation using magnetorquers and static input allocation. IEEE Transactions on Control Systems Technology , 23 (2), 525–539.
  • Tsiotras, P. (1996). Stabilization and optimality results for the attitude control problem. Journal of Guidance, Control, and Dynamics , 19 (4), 772–779.
  • Xiao, B. , Hu, Q. , Wang, D. , & Poh, E. K. (2013). Attitude tracking control of rigid spacecraft with actuator misalignment and fault. IEEE Transactions on Control Systems Technology , 21 (6), 2360–2366.
  • Yang, J. , Li, S. , & Yu, X. (2013). Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Transactions on Industrial Electronics , 60 (1), 160–169.
  • Yao, X. , Tao, G. , Ma, Y. , & Qi, R. (2016). Adaptive actuator failure compensation design for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems , 52 (3), 1021–1034.
  • Yoon, H. , Eun, Y. , & Park, C. (2014). Adaptive tracking control of spacecraft relative motion with mass and thruster uncertainties. Aerospace Science and Technology , 34 , 75–83.
  • Zhang, F. , & Duan, G.-R. (2014). Robust adaptive integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property. International Journal of Systems Science , 45 (5), 1007–1034.
  • Zhang, X. , Liu, X. , & Zhu, Q. (2016). Attitude stabilization of rigid spacecraft with disturbance generated by time varying uncertain exosystems. Communications in Nonlinear Science and Numerical Simulation , 35 , 25–36.
  • Zhang, A. , Ni, J. , & Karimi, H. R. (2013). Reaction wheel installation deviation compensation for overactuated spacecraft with finite-time attitude control. Mathematical Problems in Engineering , 2013 , 1–10.
  • Zhang, A. , Wang, Y. , Zhang, Z. , & Karimi, H. R. (2014). Robust control allocation for spacecraft attitude stabilization under actuator faults and uncertainty. Mathematical Problems in Engineering , 2014 , 1–12.
  • Zhao, L. , & Jia, Y . (2015). Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. International Journal of Control , 88 (6), 1150–1162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.