241
Views
5
CrossRef citations to date
0
Altmetric
Articles

Adaptive filtering scheme for parameter identification of nonlinear Wiener–Hammerstein systems and its application

ORCID Icon &
Pages 2490-2504 | Received 01 Jan 2018, Accepted 08 Dec 2018, Published online: 30 Jan 2019

References

  • Babuška, I. (1959). The nonlinear theory of intrinsic friction. APL Materials, 4, 303–321.
  • Bai, E. W. (2002). A blind approach to the Hammerstein-Wiener model identification. Automatica, 38(6), 967–979.
  • Banning, R., de Koning, W. L., Adriaens, H. J. M. T. A., & Koops, R. K. (2001). State-space analysis and identification for a class of hysteretic systems. Automatica, 37(12), 1883–1892.
  • Butcher, M., Giustiniani, A., & Masi, A. (2016). On the identification of Hammerstein systems in the presence of an input hysteretic nonlinearity with nonlocal memory: Piezoelectric actuators-an experimental case study. Physica B: Condensed Matter, 486(C), 101–105.
  • Castro-Garcia, R., Tiels, K., Agudelo, O. M., & Suykens, J. A. K. (2017). Hammerstein system identification through best linear approximation inversion and regularisation. International Journal of Control, 0, 1–17. doi:10.1080/00207179.2017.1329550.
  • de Wit, C. C, Olsson, H., Åström, K. J., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40(3), 419–425.
  • Ding, F., Liu, X. M., & Gu, Y. (2016). An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. Journal of the Franklin Institute, 353(2), 398–408.
  • Dong, R., Tan, Y., Xie, Y., & Janschek, K. (2017). Recursive identification of micropositioning stage based on sandwich model with hysteresis. IEEE Transactions on Control Systems Technology, 25(1), 317–325.
  • Fang, L., Wang, J., & Zhang, Q. (2015). Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model. Nonlinear Dynamics, 79(2), 1257–1273.
  • Giri, F., Rochdi, Y., & Chaoui, F. Z. (2004). System identification of Hammerstein models including a hysteresis input nonlinearity. IFAC Proceedings Volumes, 37, 197–202.
  • Goodwin, G. C., & Sin, K. S. (Eds.). (1989). Adaptive filtering prediction and control (907–917). Upper Saddle River, NJ: Prentice-Hall, Inc.
  • Gu, G. Y., Li, C. X., Zhu, L. M., & Su, C. Y. (2016). Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Transactions on Mechatronics, 21(3), 1792–1797.
  • Guo, L. J, Wang, Y. J, & Wang, C. (2016). A recursive least squares algorithm for pseudo-linear ARMA systems using the auxiliary model and the filtering technique. Circuits, Systems, and Signal Processing, 35(7), 2655–2667.
  • Ikhouane, F., & Rodellar, J. (2006). A linear controller for hysteretic systems. IEEE Transactions on Automatic Control, 51(2), 340–344.
  • Janaideh, M. A, Rakheja, S., & Su, C. Y. (2011). An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics, 16(4), 734–744.
  • Jayawardhana, B., Ouyang, R. Y., & Andrieu, V. (2012). Stability of systems with the Duhem hysteresis operator: The dissipativity approach. Automatica, 48(10), 2657–2662.
  • Jia, Y. (2000). Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Transactions on Control Systems Technology, 8(3), 554–569.
  • Jia, Y. (2003). Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: A predictive approach. IEEE Transactions on Automatic Control, 48(8), 1413–1416.
  • Ji, W., Li, Q., Xu, B., Zhao, D., & Fang, S. (2011). Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system. Aerospace Science and Technology, 15(1), 25–32.
  • Jiles, D. C, & Atherton, D. L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61(1), 48–60.
  • Korhonen, M. D., Clausi, D. A., & Jernigan, M. E. (2005). Modeling emotional content of music using system identification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(3), 588–599.
  • Krejči, P., Timoshin, S. A., & Tolstonogov, A. A. (2018). Relaxation and optimisation of a phase-field control system with hysteresis. International Journal of Control, 91(1), 85–100.
  • Li, L. W, & Ren, X. M. (2017). Decomposition-based recursive least-squares parameter estimation algorithm for Wiener-Hammerstein systems with dead-zone nonlinearity. International Journal of Systems Science, 48(11), 2405–2414.
  • Li, L. W, Ren, X. M., & Guo, F. M. (2018). Modified multi-innovation stochastic gradient algorithm for Wiener-Hammerstein systems with backlash. Journal of the Franklin Institute, 355(9), 4050–4075.
  • Ljung, L. (1978). Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control, 23(5), 770–783.
  • Ljung, L. (1999). System identification: Theory for the user (2nd ed., pp. 199–205). Upper Saddle River, NJ: Prentice-Hall, Inc.
  • Lv, Y. F, & Ren, X. M. (2018). Approximate Nash solutions for multiplayer mixed-zero-sum game with reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems. doi:10.1109/TSMC.2018.2861826.
  • Macki, J. W, Nistri, P., & Zecca, P. (1993). Mathematical models for hysteresis. SIAM Review, 35(1), 94–123.
  • Marconato, A., Sjöberg, J., Suykens, J. A. K, & Schoukens, J. (2014). Improved initialization for nonlinear state-space modeling. IEEE Transactions on Instrumentation and Measurement, 63(4), 972–980.
  • Milecki, A., & Pelic, M. (2016). Application of geometry based hysteresis modelling in compensation of hysteresis of piezo bender actuator. Mechanical Systems and Signal Processing, 78(11), 4–17.
  • Na, J., Chen, Q., Ren, X. M., & Guo, Y. (2014). Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Transactions on Industrial Electronics, 61(1), 486–494.
  • Na, J., Yang, J., Wu, X., & Guo, Y. (2015). Robust adaptive parameter estimation of sinusoidal signals. Automatica, 53(C), 376–384.
  • Patre, P. M, MacKunis, W., Johnson, M., & Dixon, W. E. (2010). Composite adaptive control for Euler-Lagrange systems with additive disturbances. Automatica, 46(1), 140–147.
  • Ryba, Ł., Dokoupil, J., Voda, A., & Besançon, G. (2017). Adaptive hysteresis compensation on an experimental nanopositioning platform. International Journal of Control, 90(4), 765–778.
  • Sastry, S., & Bodson, M. (Eds.). (1989). Adaptive control: Stability, convergence, and robustness (pp. 71–85). Upper Saddle River, NJ: Prentice-Hall, Inc.
  • Shen, Q. Y., & Ding, F. (2015). Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle. Journal of the Franklin Institute, 352(7), 2847–2865.
  • Sjöberg, J., & Schoukens, J. (2012). Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation. Automatica, 48(2), 353–359.
  • Steentjes, S., Petrun, M., Dolinar, D., & Hameyer, K. (2016). Effect of parameter identification procedure of the static hysteresis model on dynamic hysteresis loop shapes. IEEE Transactions on Magnetics, 52(5), 1–4.
  • Tan, Y. H, & Deng, L. (2014). Modeling the dynamic sandwich system with hysteresis using NARMAX model. Mathematics and Computers in Simulation, 97(1), 162–188.
  • Tiels, K., Schoukens, M., & Schoukens, J. (2015). Initial estimates for Wiener-Hammerstein models using phase-coupled multisines. Automatica, 60, 201–209.
  • Van Bree, P. J., van Lierop, C. M. M., & van den Bosch, P. P. J. (2009). Control-oriented hysteresis models for magnetic electron lenses. IEEE Transactions on Magnetics, 45(11), 5235–5238.
  • Vörös, J. (2010). Modeling and identification of systems with backlash. Automatica, 46(2), 369–374.
  • Vörös, J. (2015). Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle. Applied Mathematical Modelling, 39(18), 5531–5539.
  • Wang, D. Q., & Ding, F. (2016). Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Information Sciences, 355–356(Supplement C), 237–248.
  • Wang, Y. J., & Ding, F. (2016). Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica, 71(Supplement C), 308–313.
  • Wang, S., Na, J., & Ren, X. (2018). RISE-based asymptotic prescribed performance tracking control of nonlinear servo mechanisms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(12), 2359–2370.
  • Zeng, T., Ren, X., & Zhang, Y. (2018). Adaptive finite-time disturbance observer based sliding mode control for dual-motor driving system. Complexity, 2018, 1–9.
  • Zhang, G., Chen, J., & Li, Z. M. (2010). Identifier-based adaptive robust control for servomechanisms with improved transient performance. IEEE Transactions on Industrial Electronics, 57(7), 2536–2547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.