310
Views
4
CrossRef citations to date
0
Altmetric
Articles

Exploiting natural dynamics for gait generation in undulatory locomotion

& ORCID Icon
Pages 307-318 | Received 10 Mar 2018, Accepted 07 Jan 2019, Published online: 30 Jan 2019

References

  • Ahlborn, B. K., Blake, R. W., & Megill, W. M. (2006). Frequency tuning in animal locomotion. Zoology, 109, 43–53. doi: 10.1016/j.zool.2005.11.001
  • Blair, J., & Iwasaki, T. (2011). Optimal gaits for mechanical rectifier systems. IEEE Transactions on Automatic Control, 56(1), 59–71. doi: 10.1109/TAC.2010.2051074
  • Borazjani, I., & Sotiropoulos, F. (2008). Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. The Journal of Experimental Biology, 211, 1541–1558. doi: 10.1242/jeb.015644
  • Borazjani, I., & Sotiropoulos, F. (2009). Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. The Journal of Experimental Biology, 212, 576–592. doi: 10.1242/jeb.025007
  • Chen, J., Friesen, W. O., & Iwasaki, T. (2011a). Mechanisms underlying rhythmic locomotion: Body-fluid interaction in undulatory swimming. The Journal of Experimental Biology, 214(4), 561–574. doi: 10.1242/jeb.048751
  • Chen, Z., Iwasaki, T., & Zhu, L. (2015). Feedback control for natural oscillations of locomotion systems under continuous interactions with environment. IEEE Trans Control Systems Technology, 23, 1294–1306. doi: 10.1109/TCST.2014.2363432
  • Chen, J., Tian, J., Iwasaki, T., & Friesen, W. (2011b). Mechanisms underlying rhythmic locomotion: Dynamics of muscle activation. The Journal of Experimental Biology, 214(11), 1955–1964. doi: 10.1242/jeb.052787
  • Collins, S., Ruina, A., Tedrake, R., & Wissei, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science (New York, N.Y.), 307, 1082–1085. doi: 10.1126/science.1107799
  • Cortes, J., Martinez, S., Ostrowski, J. P., & McIsaac, K. A. (2001). Optimal gaits for dynamic robotic locomotion. International Journal of Robotics Research, 20(9), 707–728. doi: 10.1177/02783640122067624
  • Curet, O., Patankar, N., Lauder, G., & MacIver, M. (2011). Mechanical properties of bio-inspired robotic knifefish with an undulatory proopulsor. Bioinspiration & Biomimetics, 6(2), 026004. doi: 10.1088/1748-3182/6/2/026004
  • Fukuoka, Y., Kimura, H., & Cohen, A. (2003). Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. International Journal of Robotics Research, 22(3–4), 187–202. doi: 10.1177/0278364903022003004
  • Gazzola, M., Argentina, M., & Mahadevan, L. (2015). Gait and speed selection in slender inertial swimmers. Proceedings of the National Academy of Sciences, 112(13), 3874–3879. doi: 10.1073/pnas.1419335112
  • Grizzle, J., Abba, G., & Plestan, F. (2001). Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 46(1), 51–64. doi: 10.1109/9.898695
  • Hatton, R. L., & Choset, H. (2010). Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction. Autonomous Robots, 28, 271–281. doi: 10.1007/s10514-009-9175-2
  • Hicks, G., & Ito, K. (2005). A method for determination of optimal gaits with application to a snake-like serial-link structure. IEEE Transactions on Automatic Control, 50(9), 1291–1306. doi: 10.1109/TAC.2005.854583
  • Hirose, S. (1993). Biologically inspired robots: Snake-like locomotors and manipulators. Oxford: Oxford University Press.
  • Holt, K., Hamill, J., & Anders, R. (1991). Predicting the minimal energy cost of human walking. Medicine and Science in Sports and Exercise, 23, 491–498. doi: 10.1249/00005768-199104000-00016
  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653. doi: 10.1016/j.neunet.2008.03.014
  • Ijspeert, A. J. (2014). Biorobotics: Using robots to emulate and investigate agile locomotion. Science (New York, N.Y.), 346, 196–203. doi: 10.1126/science.1254486
  • Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science (New York, N.Y.), 315(5817), 1416–1420. doi: 10.1126/science.1138353
  • Kohannim, S., & Iwasaki, T. (2014). Analytical insights into optimality and resonance in fish swimming. Journal of the Royal Society, Interface / the Royal Society, 11(20131073), 682–693.
  • Kohannim, S., & Iwasaki, T. (2017). Dynamical model and optimal turning gait for mechanical rectifier system. IEEE Transactions Automatic Control, 62(2), 682–693. doi: 10.1109/TAC.2016.2561700
  • Leftwich, M. C., Tytell, E. D., Cohen, A. H., & Smits, A. J. (2012). Wake structures behind a swimming robotic lamprey with a passively flexible tail. The Journal of Experimental Biology, 215, 416–425. doi: 10.1242/jeb.061440
  • Lewin, G., & Haj-Hariri, H. (2003). Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. Journal of Fluid Mechanics, 492, 339–362. doi: 10.1017/S0022112003005743
  • Lighthill, M. (1969). Hydrodynamics of aquatic animal propulsion. Annual Review of Fluid Mechanics, 1, 413–446. doi: 10.1146/annurev.fl.01.010169.002213
  • Liu, X., Fish, F., Russo, R., Blemker, S., & Iwasaki, T. (2016). Modeling and optimality analysis of pectoral fin locomotion. In B. Prilutsky and D.H. Edwards (Eds.), Chapter 11, neuromechanical modeling of posture and locomotion, Springer series in computational neuroscience, New York: Springer (pp. 309–332).
  • Long Jr, J. H. (1998). Muscles, elastic energy, and the dynamics of body stiffness in swimming eels. American Zoology, 38, 771–792. doi: 10.1093/icb/38.4.771
  • Ludeke, T., & Iwasaki, T. (2017). Natural modes and resonance in undulatory locomotion. In IEEE Am. Cont. Conf. Proc. (pp. 5443–5448).
  • McGeer, T. (1990). Passive dynamic walking. International Journal Robotics Research, 9(2), 62–82. doi: 10.1177/027836499000900206
  • McIsaac, K. A., & Ostrowski, J. P. (2003). Motion planning for anguilliform locomotion. IEEE Transactions on Robotics and Automation, 19(4), 637–652. doi: 10.1109/TRA.2003.814495
  • Moored, K., Dewey, P., Smits, A., & Haj-Hariri, H. (2012). Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. Journal of Fluid Mechanics, 708, 329–348. doi: 10.1017/jfm.2012.313
  • Saito, M., Fukaya, M., & Iwasaki, T. (2002). Serpentine locomotion with robotic snake. IEEE Control Systems Magazine, 22(1), 64–81. doi: 10.1109/37.980248
  • Sitti, M., Menciassi, A., Ijspeert, A. J., Low, K. H., & Kim, S. (2013). Survey and introduction to the focused section on bio-inspired mechatronics. IEEE Transactions Mechatronics, 18(2), 409–418. doi: 10.1109/TMECH.2012.2233492
  • Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., & Choset, H. (2009). Parameterized and scripted gaits for modular snake robots. Advanced Robotics, 23, 1131–1158. doi: 10.1163/156855309X452566
  • Triantafyllou, M., Triantafyllou, G., & Yue, D. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics, 32, 33–53. doi: 10.1146/annurev.fluid.32.1.33
  • Wagenaar, R., & van Emmerik, R. (2000). Resonant frequencies of arms and legs identify different walking patterns. Journal of Biomechanics, 33, 853–861. doi: 10.1016/S0021-9290(00)00020-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.