77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mixed ICC/ℋ control for systems with sensors aging

ORCID Icon &
Pages 1065-1080 | Received 16 Nov 2018, Accepted 08 Jun 2019, Published online: 27 Jun 2019

References

  • Apkarian, P., Pellanda, P. C., & Tuan, H. D. (2000). Mixed H2/H_infinity multi-channel linear parameter-varying control in discrete time. Systems & Control Letters, 41(5), 333–346. doi: 10.1016/S0167-6911(00)00076-1
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.
  • Cai, X., & Wu, F. (2010). Robust parameter-dependent fault-tolerant control for actuator and sensor faults. International Journal of Control, 83(7), 1475–1484. doi: 10.1080/00207179.2010.481024
  • De Caigny, J., Camino, J. F., Oliveira, R. C., Peres, P. L. D., & Swevers, J. (2009). Gain-scheduled H∞-control for discrete-time polytopic LPV systems using homogeneous polynomially parameter-dependent Lyapunov functions. IFAC Proceedings Volumes, 42(6), 19–24. doi: 10.3182/20090616-3-IL-2002.00004
  • De Caigny, J., Camino, J. F., Oliveira, R. C., Peres, P. L. D., & Swevers, J. (2010). Gain-scheduled H2 and H∞ control of discrete-time polytopic time-varying systems. IET Control Theory & Applications, 4(3), 362–380. doi: 10.1049/iet-cta.2008.0364
  • De Caigny, J., Camino, J. F., Oliveira, R. C., Peres, P. L. D., & Swevers, J. (2012). Gain-scheduled dynamic output feedback control for discrete-time LPV systems. International Journal of Robust and Nonlinear Control, 22(5), 535–558. doi: 10.1002/rnc.1711
  • De Oliveira, M. C., Geromel, J. C., & Bernussou, J. (1999). An LMI optimization approach to multiobjective controller design for discrete-time systems. In Proceedings of the 38th IEEE conference on decision and control, 1999 (Vol. 4, pp. 3611–3616).
  • De Oliveira, M. C., Geromel, J. C., & Bernussou, J. (2002). Extended H2 and H∞ norm characterizations and controller parametrizations for discrete-time systems. International Journal of Control, 75(9), 666–679. doi: 10.1080/00207170210140212
  • de Souza, C. E., Barbosa, K. A., & Neto, A. T. (2006, June). Robust H∞; filtering for discrete-time linear systems with uncertain time-varying parameters. IEEE Transactions on Signal Processing, 54(6), 2110–2118. doi:10.1109/TSP.2006.874349.
  • Gao, S., & Liu, J. (2018). Adaptive fault-tolerant vibration control of a wind turbine blade with actuator stuck. International Journal of Control, 1–12.
  • Jackson, L. B. (2013). Digital filters and signal processing: With MATLAB® exercises. New York: Springer Science & Business Media.
  • Lacerda, M. J., Tognetti, E. S., Oliveira, R. C., & Peres, P. L. (2016). A new approach to handle additive and multiplicative uncertainties in the measurement for LPV filtering. International Journal of Systems Science, 47(5), 1042–1053. doi: 10.1080/00207721.2014.911389
  • Liu, X., Zhang, M., Wang, Y., & Rogers, E. (2018). Design and experimental validation of an adaptive sliding mode observer-based fault-tolerant control for underwater vehicles. IEEE Transactions on Control Systems Technology, 1–8. doi:10.1109/TCST.2018.2870829.
  • Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in matlab. In 2004 IEEE international symposium on computer aided control systems design (pp. 284–289).
  • Lu, B., & Wu, F. (2009). Switching-based fault-tolerant control for an F-16 aircraft with thrust vectoring. In Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009 (pp. 8494–8499).
  • Madhag, A., & Zhu, G. G. (2017). Online sensor noise covariance identification using a modified adaptive filter. In ASME 2017 dynamic systems and control conference (pp. V002T04A001–V002T04A001).
  • Madhag, A., & Zhu, G. G. (in press-a). Online covariance estimation of slow-varying measurement noises using a modified adaptive filter. International Journal of Automation and Control. Retrieved from https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=IJAAC.
  • Madhag, A., & Zhu, G. G. (in press-b). Online sensor performance monitoring and fault detection for discrete linear parameter varying systems. International Journal of Automation and Control. Retrieved from https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=IJAAC.
  • Mallavalli, S., & Fekih, A. (2018). A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator faults and exogenous disturbances. International Journal of Control, 1–14. doi: 10.1080/00207179.2018.1484173
  • Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course (Vol. 87). Boston, MA: Springer Science & Business Media.
  • Nian, X., Chen, W., Chu, X., & Xu, Z. (2018). Robust adaptive fault estimation and fault tolerant control for quadrotor attitude system. International Journal of Control, 1–13. doi: 10.1080/00207179.2018.1484573
  • Oliveira, R. C., & Peres, P. L. (2009). Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design. Automatica, 45(11), 2620–2626. doi: 10.1016/j.automatica.2009.07.015
  • Ram, M., & Davim, J. P. (2018). Diagnostic techniques in industrial engineering. Cham: Springer.
  • Smith, S. (2013). Digital signal processing: A practical guide for engineers and scientists. Boston, MA: Elsevier.
  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1–4), 625–653. doi: 10.1080/10556789908805766
  • Tao, H., Paszke, W., Rogers, E., Yang, H., & Gałkowski, K. (2017). Iterative learning fault-tolerant control for differential time-delay batch processes in finite frequency domains. Journal of Process Control, 56, 112–128. doi: 10.1016/j.jprocont.2016.12.007
  • Thanapalan, K., Veres, S., Rogers, E., & Gabriel, S. (2006). Fault tolerant controller design to ensure operational safety in satellite formation flying. In 2006 45th IEEE conference on decision and control (pp. 1562–1567).
  • White, A. P., Zhu, G., & Choi, J. (2013a). Guaranteed 2 to control for discrete-time polytopic LPV systems. In 2013 American control conference (pp. 6066–6071).
  • White, A. P., Zhu, G., & Choi, J. (2013b). A linear matrix inequality solution to the input covariance constraint control problem. In ASME 2013 dynamic systems and control conference (pp. V002T31A002–V002T31A002).
  • White, A. P., Zhu, G., & Choi, J. (2016). Optimal LPV control with hard constraints. International Journal of Control, Automation and Systems, 14(1), 148–162. doi: 10.1007/s12555-014-0248-4
  • White, A. P., Zhu, G., & Choi, J (2013c). Linear parameter-varying control for engineering applications. New York: Springer.
  • Zhu, G., Grigoriadis, K. M., & Skelton, R. E. (1995). Covariance control design for hubble space telescope. Journal of Guidance, Control, and Dynamics, 18(2), 230–236. doi: 10.2514/3.21374

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.