598
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Prescribed and controlled finite-time convergence based on a disturbance observer for an adaptive sliding mode controller

ORCID Icon, &
Pages 1707-1718 | Received 15 Jan 2020, Accepted 22 Dec 2020, Published online: 07 Jan 2021

References

  • Basin, M., Panathula, C. B., & Shtessel, Y. (2016). Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control. International Journal of Control, 89(9), 1777–1787. https://doi.org/10.1080/00-207179.2016.1184759
  • Castañeda, H., Rodriguez, J., & Gordillo, J. L. (2019). Continuous and smooth differentiator based on adaptive sliding mode control for a quadrotor MAV. Asian Journal of Control, 1–12, https://doi.org/10.1002/asjc.2249
  • Chang, Y. (2009). Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability. IEEE Transactions on Automatic Control, 54(12), 2863–2869. https://doi.org/10.1109/TAC.2009.2033748
  • Edwards, C., & Shtessel, Y. (2019). Enhanced continuous higher order sliding mode control with adaptation. Journal of the Franklin Institute, 356(9), 4773–4784. https://doi.org/10.1016/j.jfranklin.2018.12.026
  • Golestani, M., Mobayen, S., & Tchier, F. (2016). Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory and Applications, 10(14), 1675–1683. https://doi.org/10.1049/iet-cta.2016.0163
  • Gonzalez-Garcia, A., & Castañeda, H. (2019a). Control of a double thruster twin-hull unmanned surface vehicle: Experimental results. XXI Congreso Mexicano de Robotica 2019.
  • Gonzalez-Garcia, A., & Castañeda, H. (2019b). Modeling, identification and control of an unmanned surface vehicle. AUVSI XPONENTIAL 2019: All things unmanned.
  • Hu, Y., Chen, M. Z. Q., & Li, C. (2017). Active structural control for load mitigation of wind turbines via adaptive sliding mode approach. Journal of the Franklin Institute, 354(11), 4311–4330. https://doi.org/10.1016/j.jfranklin.2017.04.002
  • Hu, X., Wu, L., Si, X., & Xu , B. (2017). Adaptive sliding mode control of non-linear non-minimum phase system with input delay. IET Control Theory and Applications, 11(8), 1153–1161. https://doi.org/10.1049/iet-cta.2016.1167
  • Jing, C., Xu, H., & Niu, X. (2019). Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Transactions, 91, 41–51. https://doi.org/10.1016/j.isatra.2019.01.017
  • Junhong, S., & Shenmin, S. (2016). Three-dimensional guidance law based on adaptive integral sliding mode control. Chinese Journal of Aeronautics.9(1), 202–214.https://doi.org/10.1016/j.cja.2015.12.012
  • Li, P., Yu, X., & Xiao, B. (2018). Adaptive quasi-optimal higher order sliding mode control without gain overestimation. IEEE Transactions on Industrial Informatics, 14(9), 3881–3891. https://doi.org/10.1109/TII.2017.2787701
  • Li, P., & Zheng, Z. Q. (2010). Robust adaptive second-order sliding mode control with fast transient performance. IET Control Theory and Applications, 6(2), 305–312. https://doi.org/10.1049/iet-cta.2010.0621
  • Lin, P., Ma, J., & Zheng, Z. (2016). Robust adaptive sliding mode control for uncertain nonlinear MIMO system with guaranteed steady state tracking error bounds. Journal of the Franklin Institute, 353(2), 303–321. https://doi.org/10.1016/j.jfranklin.2015.11.005
  • Luo, D., Xiong, X., Jin, S., & Kamal, S. (2018). Adaptive gains of dual level to super-twisting algorithm for sliding mode design. IET Control Theory and Applications, 12(17), 2347–2356. https://doi.org/10.1049/iet-cta.2018.5380
  • Mofid, O., & Mobayen, S. (2018). Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Transactions, 72, 1–14. https://doi.org/10.1016/j.isatra.2017.11.010
  • Nasir, M. T., & El-Ferik, S. (2017). Adaptive sliding mode cluster space control of a non-holonomic multi robot system with applications. IET Control Theory and Applications, 11(8), 1264–1273. https://doi.org/10.1049/iet-cta.2016.1110
  • Nasirin, A., Nguang, S. K., & Swain, A. (2014). Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties. Journal of the Franklin Institute, 351(4), 2048–2061. https://doi.org/10.1016/j.jfra-nklin.2012.12.019
  • Pai, M. C. (2010). Design of adaptive sliding mode controller for robust tracking and model following. Journal of the Franklin Institute, 347(10), 1837–1849. https://doi.org/10.1016/j.jfranklin.2010.10.003
  • Plestan, F., Shtessel, Y., Brégeault, V., & Poznyak, A. (2010). New methodologies for adaptive sliding mode control. International Journal of Control, 83(9), 1907–1919. https://doi.org/10.1080/00207179.2010.501385
  • Roy, S., & Kar, I. N. (2017). Adaptive sliding mode control of a class of nonlinear systems with artificial delay. Journal of the Franklin Institute, 354(18), 8156–8179. https://doi.org/10.1016/j.jfranklin.2017.10.010
  • Shtessel, Y., Levant, A., Edwards, C., & Fridman, L. (2014). Sliding mode control and observation (control engineering). Springer.
  • Shtessel, Y., Taleb, M., & Plestan, F. (2012). A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica, 48(5), 759–769. https://doi.org/10.1016/j.automatica.2012.02.024
  • Taleb, M., & Plestan, F. (2016). Adaptive robust controller based on integral sliding mode concept. International Journal of Control, 89(9), 1788–1797. https://doi.org/10.1080/00207179.2016.1147083
  • Tuan, V. A., & Kang, H. J. (2019). An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables. IEEE Access, 7, 8701–8712. https://doi.org/10.1109/ACCESS.2018.2886222
  • Utkin, V. I. (2016a). Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control, 61(3), 829–833. https://doi.org/10.1109/TAC.2015.2450571
  • Utkin, V. I. (2016b). On convergence time and disturbance rejection of super-twisting control. IEEE Transactions on Automatic Control, 58(8), 2013–2017. https://doi.org/10.1109/TAC.2013.2251812
  • Utkin, V. I., & Poznyak, A. S. (2013). Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica, 49(1), 39–47. https://doi.org/10.1016/j.automatica.2012.09.008
  • Wanga, J. M., Liu, J. J., & Renb, B. et al. (2015). Sliding mode control to stabilization of cascaded heat PDE–ODE systems subject to boundary control matched disturbance. Automatica, 52, 23–34. https://doi.org/10.1016/j.automatica.2014.10.117
  • Yeh, F. K. (2012). Adaptive sliding mode guidance law design for missiles with thrust vector control and divert control system. IET Control Theory and Applications, 6(4), 552–559. https://doi.org/10.1049/iet-cta.2011.0227
  • Zhang, Q., Wang, C., Su, X., & Xu, D. (2018). Observer-based terminal sliding mode control of non-affine nonlinear systems: Finite-time approach. Journal of the Franklin Institute, 355(16), 7985–8004. https://doi.org/10.1016/j.jfranklin.2018.08.018
  • Zheng, Z., & Sun, L. (2018). Adaptive sliding mode trajectory tracking control of robotic airships with parametric uncertainty and wind disturbance. Journal of the Franklin Institute, 355(1), 106–122. https://doi.org/10.1016/j.jfranklin.2017.11.004
  • Zhu, J., & Khayati, K. (2016). Adaptive sliding mode control – convergence and gain boundedness revisited. International Journal of Control, 89(4), 801–814. https://doi.org/10.1080/00207179.2015.1101491

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.