382
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Finite-time multi-target tracking of networked Euler–Lagrange systems via hierarchical active disturbance rejection control

, , , , &
Pages 2743-2757 | Received 29 Sep 2020, Accepted 18 May 2021, Published online: 07 Jun 2021

References

  • Bhat, S. P., & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38(3), 751–766. https://doi.org/10.1137/S0363012997321358
  • Chen, C. Y., Liu, F., Wu, L., Yan, H., Gui, W., & Eugene Stanley, H. (2021). Tracking performance limitations of networked control systems with repeated zeros and poles. IEEE Transactions on Automatic Control, 66(4), 1902–1909. https://doi.org/10.1109/TAC.9
  • Deng, W., & Yao, J. (2019). Extended-state-observer-based adaptive control of electrohydraulic servomechanisms without velocity measurement. IEEE/ASME Transactions on Mechatronics, 25(3), 1151–1161. https://doi.org/10.1109/TMECH.3516
  • Ding, T. F., Ge, M. F., Liu, Z. W., Y. W. Wang, & Karimi, H. R. (2020). Discrete-communication-based bipartite tracking of networked robotic systems via hierarchical hybrid control. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(4), 1402–1412. https://doi.org/10.1109/TCSI.8919
  • Gao, Z. (2006). Active disturbance rejection control: A paradigm shift in feedback control system design. In 2006 American Control Conference, IEEE (pp. 2399–2405).
  • Ge, M. F., Guan, Z. H., Hu, B., He, D. X., & Liao, R. Q. (2016). Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction. Automatica, 69, 410–417. https://doi.org/10.1016/j.automatica.2016.03.008
  • Ge, M. F., Liu, Z. W., Wen, G., Yu, X., & Huang, T. W. (2020). Hierarchical controller-estimator for coordination of networked Euler–Lagrange systems. IEEE Transactions on Cybernetics, 50(6), 2450–2461. https://doi.org/10.1109/TCYB.6221036
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
  • Han, G. S., Guan, Z. H., Li, J., He, D. X., & Zheng, D. F. (2016). Multi-tracking of second-order multi-robot systems using impulsive control. Nonlinear Dynamics, 84(3), 1771–1781. https://doi.org/10.1007/s11071-016-2604-9
  • Han, G. S., Guan, Z. H., Li, J., Liao, R. Q., & Cheng, X. M. (2015). Multi-consensus of multi-robot networks via a rectangular impulsive approach. Systems & Control Letters, 76, 28–34. https://doi.org/10.1016/j.sysconle.2014.11.010
  • Hong, Y., Huang, J., & Xu, Y. (2001). On an output feedback finite-time stabilization problem. IEEE Transactions on Automatic Control, 46(2), 305–309. https://doi.org/10.1109/9.905699
  • Hua, C., Li, J., Yang, Y., & Guan, X. (2016). Extended-state-observer-based finite-time synchronization control design of teleoperation with experimental validation. Nonlinear Dynamics, 85(1), 1–15. https://doi.org/10.1007/s11071-016-2687-3
  • Jiang, W., Rahmani, A., & Wen, G. (2021). Fully distributed time-varying formation-containment control for large-scale nonholonomic vehicles with an unknown real leader. International Journal of Control, 94(4), 1020–1032. https://doi.org/10.1080/00207179.2019.1626996
  • Li, H., Zhao, S., He, W., & Lu, R. (2019). Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica, 100(9), 99–107. https://doi.org/10.1016/j.automatica.2018.10.030
  • Liang, C. D., Ge, M. F., Liu, Z. W., Wang, Y. W., & Karimi, H. R. (2021). Output multiformation tracking of networked heterogeneous robotic systems via finite-time hierarchical control. IEEE Transactions on Cybernetics, 51(6), 2893–2904. https://doi.org/10.1109/TCYB.6221036
  • Liang, C. D., Wang, L., Yao, X. Y., Liu, Z. W., & Ge, M. F. (2019). Multi-target tracking of networked heterogeneous collaborative robots in task space. Nonlinear Dynamics, 97, 1159–1173. https://doi.org/10.1007/s11071-019-05038-x
  • Liu, Z. W., Guan, Z. H., Shen, X. M., & Gang, F. (2012). Consensus of multi-robot networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Transactions on Automatic Control, 57(10), 2639–2643. https://doi.org/10.1109/TAC.2012.2214451
  • Liu, J., Suo, W., Zha, L., Tian, E., & Xie, X. (2020). Security distributed state estimation for nonlinear networked systems against DoS attacks. International Journal of Robust and Nonlinear Control, 30(3), 1156–1180. https://doi.org/10.1002/rnc.v30.3
  • Marino, A. (2017). Distributed adaptive control of networked cooperative mobile manipulators. IEEE Transactions on Control Systems Technology, 26(5), 1646–1660. https://doi.org/10.1109/TCST.87
  • Mien, V., Ge, S. S., & Ren, H. (2017). Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Transactions on Cybernetics, 47(7), 1681–1693. https://doi.org/10.1109/TCYB.2016.2555307
  • Niu, X., Liu, Y., & Man, Y. (2019). Finite-time consensus tracking for multi-robot systems with inherent uncertainties and disturbances. International Journal of Control, 92(6), 1415–1425. https://doi.org/10.1080/00207179.2017.1397289
  • Olfati-Saber, R., & R. M. Murray (2004). Consensus problems in networks of robots with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533. https://doi.org/10.1109/TAC.2004.834113
  • Qin, J. H., & Yu, C. B. (2013). Cluster consensus control of generic linear multi-robot systems under directed topology with acyclic partition. Automatica, 49(9), 2898–2905. https://doi.org/10.1016/j.automatica.2013.06.017
  • Ran, M., Wang, Q., Dong, C., & Xie, L. (2020). Active disturbance rejection control for uncertain time-delay nonlinear systems. Automatica, 112, 108692. https://doi.org/10.1016/j.automatica.2019.108692
  • Ren, W. (2009). Distributed leaderless consensus algorithms for networked Euler–Lagrange systems. International Journal of Control, 82(11), 2137–2149. https://doi.org/10.1080/00207170902948027
  • Shi, D., Zhang, J., Sun, Z., Shen, G., & Xia, Y. (2021). Composite trajectory tracking control for robot manipulator with active disturbance rejection. Control Engineering Practice, 106, 104670. https://doi.org/10.1016/j.conengprac.2020.104670
  • Sun, L., & Liu, Y. (2020). Extended state observer augmented finite-time trajectory tracking control of uncertain mechanical systems. Mechanical Systems and Signal Processing, 139, 106374. https://doi.org/10.1016/j.ymssp.2019.106374
  • Tan, K. T., Peng, X. Y., So, P. L., Chu, Y. C., & Chen, M. Z. (2012). Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Transactions on Smart Grid, 3(4), 1977–1987. https://doi.org/10.1109/TSG.2012.2205952
  • Wang, R., Dong, X., Li, Q., & Ren, Z. (2019). Distributed time-varying formation control for multi-robot systems with directed topology using an adaptive output-feedback approach. IEEE Transactions on Industrial Informatics, 15(8), 4676–4685. https://doi.org/10.1109/TII.9424
  • Wang, L. M., He, H. B., Zeng, Z. G., & Ge, M. F. (2021). Model-independent formation tracking of multiple Euler–Lagrange systems via bounded inputs. IEEE Transactions on Cybernetics, 51(5), 2813–2823. https://doi.org/10.1109/TCYB.6221036
  • Wang, Y. W., Liu, X. K., Xiao, J. W., & Shen, Y. (2018). Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica, 93(3), 26–32. https://doi.org/10.1016/j.automatica.2018.03.020
  • Wen, G., & Zheng, W. X. (2019). On constructing multiple Lyapunov functions for tracking control of multiple robots with switching topologies. IEEE Transactions on Automatic Control, 64(9), 3796–3803. https://doi.org/10.1109/TAC.9
  • Yang, Q., Fang, H., Chen, J., & Jiang, Z. P. (2017). Distributed global output-feedback control for a class of Euler–Lagrange systems. IEEE Transactions on Automatic Control, 62(9), 4855–4861. https://doi.org/10.1109/TAC.2017.2696705
  • Yao, X. Y., Ding, H. F., & Ge, M. F. (2018). Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dynamics, 92(4), 1649–1664. https://doi.org/10.1007/s11071-018-4152-y
  • Yu, J., Dong, X., Li, Q., & Ren, Z. (2019). Practical time-varying formation tracking for high-order nonlinear multi-robot systems based on the distributed extended state observer. International Journal of Control, 92(10), 2451–2462. https://doi.org/10.1080/00207179.2018.1441554
  • Yu, S., Yu, X., Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), 1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001
  • Zhan, X. S., Cheng, L. L., Wu, J., Yang, Q. S., & Han, T. (2019). Optimal modified performance of MIMO networked control systems with multi-parameter constraints. ISA Transactions, 84, 111–117. https://doi.org/10.1016/j.isatra.2018.09.018
  • Zhao, Y., Duan, Z., Wen, G., & Chen, G. (2015). Distributed finite-time tracking for a multi-robot system under a leader with bounded unknown acceleration. Systems & Control Letters, 81, 8–13. https://doi.org/10.1016/j.sysconle.2015.04.002
  • Zhao, Y., Duan, Z., Wen, G., & Chen, G. (2016). Distributed finite-time tracking of multiple non-identical second-order nonlinear systems with settling time estimation. Automatica, 64, 86–93. https://doi.org/10.1016/j.automatica.2015.11.005
  • Zhao, X. W., Guan, Z. H., Li, J., Zhang, X. H., & Chen, C. Y. (2017). Flocking of multi-robot nonholonomic systems with unknown leader dynamics and relative measurements. International Journal of Robust and Nonlinear Control, 27(17), 3685–3702. https://doi.org/10.1002/rnc.3762
  • Zhao, Z., He, X., & Ahn, C. K. (2021). Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4), 2392–2390. https://doi.org/10.1109/TSMC.2019.2912900
  • Zheng, S., & Li, W. (2018). Fuzzy finite time control for switched systems via adding a barrier power integrator. IEEE Transactions on Cybernetics, 49(7), 2693–2706. https://doi.org/10.1109/TCYB.6221036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.