632
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Identification of Hammerstein–Wiener models with hysteresis front nonlinearities

ORCID Icon, &
Pages 3353-3367 | Received 21 Dec 2020, Accepted 17 Aug 2021, Published online: 05 Sep 2021

References

  • Brouri, A., Chaoui, F. Z., Amdouri, A., & Giri, F. (2014, August 24–29). Frequency identification of Hammerstein-Wiener systems with piecewise affine input nonlinearity. 19th IFAC World Congress (pp. 10030–10035). IFAC.
  • Brouri, A., Giri, F., Chaoui, F. Z., & Amdouri, A. (2014). Identification of Hammerstein-Wiener systems with backlash input nonlinearity bordered by straight lines. 19th IFAC World Congress (pp. 475–480). IFAC.
  • Brouri, A., Kadi, L., & Lahdachi, K. (2021). Identification of nonlinear system composed of parallel coupling of Wiener and Hammerstein models. Asian Journal of Control, 1–13. https://doi.org/10.1002/asjc.2533
  • Brouri, A., Kadi, L., & Slassi, S. (2017). Frequency identification of Hammerstein-Wiener systems with backlash input nonlinearity. International Journal of Control, Automation and Systems, 15(5), 2222–2232. https://doi.org/10.1007/s12555-016-0312-3
  • Castro, G. R., Agudelo, O. M., & Suykens, A. K. (2019). Impulse response constrained LS-SVM modelling for MIMO Hammerstein system identification. International Journal of Control, 92(4), 908–925. https://doi.org/10.1080/00207179.2017.1373862
  • Dimian, M., & Andrei, P. (2014). Noise-driven phenomena in hysteretic systems. Springer.
  • Ding, F., Liu, G., & Liu, X. P. (2011). Parameter estimation with scarce measurements. Automatica, 47(6), 1646–1655. https://doi.org/10.1016/j.automatica.2011.05.007
  • Dominguez, A., Sedaghati, R., & Stiharu, I. (2008). Modeling and application of MR dampers in semi-adaptive structures. Computers & Structures, 86(3), 407–415. https://doi.org/10.1016/j.compstruc.2007.02.010
  • Dyke, S. J., Spencer, B. F., Sain, M. K., & Carlson, J. D. (1998). An experimental study of MR dampers for seismic protection. Smart Materials and Structures, 7(5), 693–703. https://doi.org/10.1088/0964-1726/7/5/012
  • Giri, F., & Bai, E. W. (2010). Block-oriented nonlinear system identification. Springer.
  • Giri, F., Brouri, A., Ikhouane, F., Chaoui, F. Z., & Radouane, A. (2013, July 3–5). Identification of Hammerstein-Wiener systems including backlash input nonlinearities. 11th IFAC International Workshop – ALCOSP (pp. 360–365). IFAC.
  • Giri, F., Radouane, A., Brouri, A., & Chaoui, F. Z. (2014). Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators. Automatica, 50(3), 768–783. https://doi.org/10.1016/j.automatica.2013.12.030
  • Giri, F., Rochdi, Y., Brouri, A., & Chaoui, F. (2011). Parameter identification of Hammerstein systems containing backlash operators with arbitrary-shape parametric borders. Automatica, 47(8), 1827–1833. https://doi.org/10.1016/j.automatica.2011.05.008
  • Giri, F., Rochdi, Y., Brouri, A., Radouane, A., & Chaoui, F. Z. (2013). Frequency identification of nonparametric Wiener systems containing backlash nonlinearities. Automatica, 49(1), 124–137. https://doi.org/10.1016/j.automatica.2012.08.043
  • Giri, F., Rochdi, Y., Chaoui, F. Z., & Brouri, A. (2008). Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities. Automatica, 44(3), 767–775. https://doi.org/10.1016/j.automatica.2007.07.005
  • Goodwin, G. C., & Sin, K. S. (1984). Adaptive filtering, prediction and control. Prentice-Hall.
  • Ikhouane, F. (2018). A survey of the hysteretic duhem model. Archives of Computational Methods in Engineering, 25(4), 965–1002. https://doi.org/10.1007/s11831-017-9218-3
  • Ikhouane, F. (2020). On Babuška’s model for asymmetric hysteresis. Communications in Nonlinear Science and Numerical Simulation, 95. https://doi.org/10.1016/j.cnsns.2020.105650
  • Ikhouane, F., & Rodellar, J. (2007). Systems with hysteresis: Analysis, identification and control using the Bouc-Wen model. John Wiley & Sons.
  • Ji, H., & Wen, Y. (2011). Experimental study on hysteresis nonlinearity of piezoelectric actuator. Applied Mechanics and Materials, 44–47, 2968–2972. https://doi.org/10.4028/www.scientific.net/AMM.44-47.2968
  • Jiles, D. C., & Atherton, D. L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61(1–2), 48–60. https://doi.org/10.1016/0304-8853(86)90066-1
  • Kalantari, R., & Foomani, M. S. (2009). Backlash nonlinearity modeling and adaptive controller design for an electromechanical power transmission system. Transaction B: Mechanical Engineering, 16(6), 463–469.
  • Kozen, D., & Landau, S. (1989). Polynomial decomposition algorithms. Journal of Symbolic Computation, 7(5), 445–456. https://doi.org/10.1016/S0747-7171(89)80027-6
  • Li, F., & Jia, L. (2019). Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals. Neurocomputing, 347, 37–48. https://doi.org/10.1016/j.neucom.2018.02.108
  • Li, L., & Ren, X. (2020). Adaptive filtering scheme for parameter identification of nonlinear Wiener-Hammerstein systems and its application. International Journal of Control, 93(10), 2490–2504. https://doi.org/10.1080/00207179.2019.1566634
  • Ljung, L. (1999). System identification, theory for the user. Prentice Hall.
  • Mzyk, G., Biegański, M., & Mielcarek, P. (2019). Multi-level identification of Hammerstein-Wiener systems. IFAC-PapersOnLine, 52(29), 174–179. https://doi.org/10.1016/j.ifacol.2019.12.640
  • Ni, B., Gilson, M., & Garnier, H. (2013). Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification. IET Control Theory & Applications, 7(9), 1276–1286. https://doi.org/10.1049/iet-cta.2012.0548
  • Oh, J., Drincic, B., & Bernstein, D. S. (2009). Nonlinear feedback models of hysteresis. IEEE Control Systems Magazine, 29(2), 100–119. https://doi.org/10.1109/MCS.2008.930919
  • Palanthandalam-Madapusi, H. J., Ridley, A. J., & Bernstein, D. S. (2005). Identification and prediction of ionospheric dynamics using a Hammerstein-Wiener model with radial basis functions. In Proceedings of the American Control Conference (pp. 5052–5057). IEEE.
  • Pintelon, R., & Schoukens, M. (2012). System identification – a frequency domain approach. Wiley.
  • Pourahmadian, F., Ahmadian, H., & Jalali, H. (2012). Modeling and identification of frictional forces at a contact interface experiencing micro-vibro-impacts. Journal of Sound and Vibration, 331(12), 2874–2886. https://doi.org/10.1016/j.jsv.2012.01.032
  • Ritt, J. F. (1922). Prime and composite polynomials. Transactions of the American Mathematical Society, 23(1), 51–66. https://doi.org/10.1090/S0002-9947-1922-1501189-9
  • Schoukens, J., & Ljung, L. (2019). Nonlinear system identification: A user-oriented road map. IEEE Control Systems Magazine, 39(6), 28–99. https://doi.org/10.1109/MCS.2019.2938121
  • Schoukens, M., Bai, E., & Rolain, Y. (2012). Identification of Hammerstein-Wiener systems. In 16th IFAC Symposium on System Identification (pp. 274–279). IFAC.
  • Schoukens, M., & Tiels, K. (2017). Identification of block-oriented nonlinear systems starting from linear approximations: A survey. Automatica, 85, 272–292. https://doi.org/10.1016/j.automatica.2017.06.044
  • Soderstorm, T., & Stoica, P. (1989). System identification. Prentice Hall.
  • Spencer, B. F., Dyke, S. J., Sain, M. K., & Carlson, J. D. (1996). Phenomenological model of a magnetorheological dampers. Journal of Engineering Mechanics, 123(3), 230–238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  • Stone, M. (1937). Applications of the theory of Boolean rings to general topology. Transactions of the American Mathematical Society, 41(3), 375–481. https://doi.org/10.1090/S0002-9947-1937-1501905-7
  • Taringou, F., Hammi, O., Srinivasan, B., Malhame, R., & Ghannouchi, F. M. (2010). Behaviour modelling of wideband RF transmitters using Hammerstein-Wiener models. IET Circuits Devices & Systems, 4(4), 282–290. https://doi.org/10.1049/iet-cds.2009.0258
  • Vörös, J. (2004). An iterative method for Hammerstein-Wiener systems parameter identification. Journal of Electrical Engineering, 55(11–12), 328–331.
  • Vörös, J. (2010). An iterative method for Hammerstein-Wiener systems parameter identification. International Journal of Control, 83(6), 1117–1124. https://doi.org/10.1080/00207171003596517
  • Vörös, J. (2015). Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle. Applied Mathematical Modelling, 39(18), 5531–5539. https://doi.org/10.1016/j.apm.2015.01.018
  • Wang, D., & Ding, F. (2008). Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems. Computers & Mathematics with Applications, 56(12), 3157–3164. https://doi.org/10.1016/j.camwa.2008.07.015
  • Wang, X. H., & Ding, F. (2015). Recursive parameter and state estimation for an input non-linear state space system using the hierarchical identification principle. Signal Processing, 117, 208–218. https://doi.org/10.1016/j.sigpro.2015.05.010
  • Wang, Z., Zhang, Z., Mao, J., & Zhou, K. (2012). A Hammerstein-based model for rate dependent hysteresis in piezoelectric actuator. In 24th Chinese Control and Decision Conference (pp. 1391–1396). IEEE.
  • Wills, A., Schön, T., Ljung, L., & Ninness, B. (2013). Identification of Hammerstein-Wiener models. Automatica, 49(1), 70–81. https://doi.org/10.1016/j.automatica.2012.09.018
  • Yong, A. Y., Tan, A. H., & Cham, C. L. (2015). Identification of block-oriented systems with rate saturation nonlinearity. In 17th IFAC Symposium on System Identification (pp. 939–944). IFAC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.