445
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Event-triggered boundary control of a flexible manipulator with uncertain end load

& ORCID Icon
Pages 124-135 | Received 01 Aug 2020, Accepted 12 Sep 2021, Published online: 28 Sep 2021

References

  • Balas, M. J. (1978). Active control of flexible systems. Journal of Optimization Theory and Applications, 25(3), 415–436. https://doi.org/10.1007/BF00932903
  • Baudouin, L., Marx, S., & Tarbouriech, S. (2019). Event-triggered damping of a linear wave equation. IFAC-PapersOnLine, 52(2), 58–63. https://doi.org/10.1016/j.ifacol.2019.08.011
  • Bieniawski, S., & Kroo, I. (2003, April 7–10). Flutter suppression using micro-trailing edge effectors. 44th AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, American.
  • Cai, M., Wang, Y., Wang, S., Wang, R., Cheng, L., & Tan, M. (2019). Prediction-based seabed terrain following control for an underwater vehicle-manipulator system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10. https://doi.org/10.1109/TSMC.2019.2944651
  • Espitia, N., Girard, A., Marchand, N., & Prieur, C. (2016). Event-based control of linear hyperbolic systems of conservation laws. Automatica, 70, 275–287. https://doi.org/10.1016/j.automatica.2016.04.009
  • Espitia, N., Tanwani, A., & Tarbouriech, S. (2017). Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 1266–1271).
  • Hardy, G. H., Littlewood, J. E., & Polya, G. (1959). Inequalities. Cambridge University Press.
  • He, W., He, X., Zou, M., & Li, H. (2019). PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Transactions on Control Systems Technology, 27(2), 790–797. https://doi.org/10.1109/TCST.2017.2780055
  • He, W., Meng, T., He, X., & Ge, S. S. (2018). Unified iterative learning control for flexible structures with input constraints. Automatica, 96, 326–336. https://doi.org/10.1016/j.automatica.2018.06.051
  • He, W., Zhang, S., & Ge, S. S. (2014). Adaptive boundary control of a nonlinear flexible string system. IEEE Transactions on Control Systems Technology, 22(3), 1088–1093. https://doi.org/10.1109/TCST.2013.2278279
  • Ji, N., & Liu, J. (2019). Adaptive actuator fault-tolerant control for a three-dimensional Euler–Bernoulli beam with output constraints and uncertain end load. Journal of the Franklin Institute, 356(7), 3869–3898. https://doi.org/10.1016/j.jfranklin.2018.11.045
  • Kong, L., He, W., Dong, Y., Cheng, L., Yang, C., & Li, Z. (2019). Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–12. https://doi.org/10.1109/TSMC.2019.2901277
  • Li, L., Cao, F., & Liu, J. (2020). Vibration control of flexible manipulator with unknown control direction. International Journal of Control, 1–13. https://doi.org/10.1080/00207179.2020.1731609
  • Liu, Y., Fu, Y., He, W., & Hui, Q. (2019). Modeling and observer-based vibration control of a flexible spacecraft with external disturbances. IEEE Transactions on Industrial Electronics, 66(11), 8648–8658. https://doi.org/10.1109/TIE.2018.2884172
  • Liu, Y., Guo, F., He, X., & Hui, Q. (2019). Boundary control for an axially moving system with input restriction based on disturbance observers. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(11), 2242–2253. https://doi.org/10.1109/TSMC.2018.2843523
  • Liu, Z., Han, Z., Zhao, Z., & He, W. (2020). Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Science China Information Sciences, to be published, https://doi.org/10.1007/s11432-020-3109-x
  • Liu, Z., Liu, J., & He, W. (2017). Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 77, 302–310. https://doi.org/10.1016/j.automatica.2016.11.002
  • Liu, Z., Zhao, Z., & Ahn, C. K. (2020). Boundary constrained control of flexible String Systems Subject to disturbances. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 112–116. https://doi.org/10.1109/TCSII.2019.2901283
  • Pai, M.-C. (2012). Robust input shaping control for multi-mode flexible structures using neuro-sliding mode output feedback control. Journal of the Franklin Institute, 349(3), 1283–1303. https://doi.org/10.1016/j.jfranklin.2012.01.012
  • Paranjape, A. A., Guan, J., Chung, S., & Krstic, M. (2013). PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Transactions on Robotics, 29(3), 625–640. https://doi.org/10.1109/TRO.2013.2240711
  • Rahn, C. D. (2001). Mechatronic control of distributed noise and vibration. Springer.
  • Selivanov, A., & Fridman, E. (2016). Distributed event-triggered control of diffusion semilinear PDEs. Automatica, 68, 344–351. https://doi.org/10.1016/j.automatica.2016.02.006
  • Seuret, A., Prieur, C., Tarbouriech, S., & Zaccarian, L. (2016). LQ-based event-triggered controller co-design for saturated linear systems. Automatica, 74, 47–54. https://doi.org/10.1016/j.automatica.2016.07.004
  • Shaheed, M. H., & Tokhi, O. (2013). Adaptive closed-loop control of a single-link flexible manipulator. Journal of Vibration and Control, 19(13), 2068–2080. https://doi.org/10.1177/1077546312453066
  • Song, X., Wang, M., Zhang, B., & Song, S. (2020). Event-triggered reliable H∞ fuzzy filtering for nonlinear parabolic PDE systems with Markovian jumping sensor faults. Information Sciences, 510, 50–69. https://doi.org/10.1016/j.ins.2019.09.012
  • Sun, T., Peng, L., Cheng, L., Hou, Z., & Pan, Y. (2020). Composite learning enhanced robot impedance control. IEEE Transactions on Neural Networks and Learning Systems, 31(3), 1052–1059. https://doi.org/10.1109/TNNLS.2019.2912212
  • Wang, C., Guo, L., Wen, C., Hu, Q., & Qiao, J. (2020). Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Transactions on Industrial Electronics, 67(3), 2241–2250. https://doi.org/10.1109/TIE.2019.2905837
  • Wang, C., Wen, C., & Hu, Q. (2020). Event-triggered adaptive control for a class of nonlinear systems with unknown control direction and sensor faults. IEEE Transactions on Automatic Control, 65(2), 763–770. https://doi.org/10.1109/TAC.2019.2916999
  • Wang, X., & Lemmon, M. (2011). On event design in event-triggered feedback systems. Automatica, 47(10), 2319–2322. https://doi.org/10.1016/j.automatica.2011.05.027
  • Wang, Y., Wang, R., Wang, S., Tan, M., & Yu, J. (2019). Underwater bio-inspired propulsion: From inspection to manipulation. IEEE Transactions on Industrial Electronics, https://doi.org/10.1109/TIE.2019.2944082
  • Xing, L., Wen, C., Liu, Z., Su, H., & Cai, J. (2017). Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 62(4), 2071–2076. https://doi.org/10.1109/TAC.2016.2594204
  • Xing, X., & Liu, J. (2019). Vibration and position control of overhead crane with three-dimensional variable length cable subject to input amplitude and rate constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–12. https://doi.org/10.1109/TSMC.2019.2930815
  • Yang, C., Peng, G., Li, Y., Cui, R., Cheng, L., & Li, Z. (2019). Neural networks enhanced adaptive admittance control of optimized robot–environment interaction. IEEE Transactions on Cybernetics, 49(7), 2568–2579. https://doi.org/10.1109/TCYB.2018.2828654
  • Zhao, Z., Ahn, C. K., & Li, H. (2020). Boundary antidisturbance control of a spatially nonlinear flexible string system. IEEE Transactions on Industrial Electronics, 67(6), 4846–4856. https://doi.org/10.1109/TIE.2019.2931230
  • Zhao, Z., He, X., & Ahn, C. K. (2019). Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–9. https://doi.org/10.1109/TSMC.2019.2912900
  • Zhao, Z., He, X., Ren, Z., & Wen, G. (2019). Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 1971–1980. https://doi.org/10.1109/TSMC.2018.2882734

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.