228
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Single controller design based on integrated trajectory for three-link vertical underactuated manipulators with first active joint

, , &
Pages 424-434 | Received 06 May 2021, Accepted 16 Oct 2021, Published online: 11 Nov 2021

References

  • Albahkali, T., Mukherjee, R., & Das, T. (2009). Swing-up control of the pendubot: An impulse–momentum approach. IEEE Transactions on Robotics, 25(4), 975–982. https://doi.org/10.1109/TRO.2009.2022427
  • Baek, J., Kwon, W., Kim, B., & Han, S. (2018). A widely adaptive time-delayed control and its application to robot manipulators. IEEE Transactions on Industrial Electronics, 66(7), 5332–5342. https://doi.org/10.1109/TIE.2018.2869347
  • Bowden, C., Holderbaum, W., & Becerra, V. M. (2012). Strong structural controllability and the multilink inverted pendulum. IEEE Transactions on Automatic Control, 57(11), 2891–2896. https://doi.org/10.1109/TAC.2012.2191180
  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In Differential geometric control theory (pp. 181–191). Birkhauser.
  • Chen, H., & Sun, N. (2020). Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Transactions on Industrial Electronics, 67(9), 7702–7714. https://doi.org/10.1109/TIE.2019.2946541
  • Dietrich, A., Wimböck, T., Albu-Schäffer, A., & Hirzinger, G. (2011, May 9–13). Singularity avoidance for nonholonomic, omnidirectional wheeled mobile platforms with variable footprint. International conference on Robotics and Automation, Shanghai, China (pp. 6136–6142). IEEE. https://doi.org/10.1109/ICRA.2011.5979549
  • Endo, K., & Yabuno, H. (2013). Swing-up control of a three-link underactuated manipulator by high-frequency horizontal excitation. Journal of Computational and Nonlinear Dynamics, 8(1), 011002. https://doi.org/10.1115/1.4006251
  • Fantoni, I., Lozano, R., & Spong, M. W. (2000). Energy based control of the pendubot. IEEE Transactions on Automatic Control, 45(4), 725–729. https://doi.org/10.1109/9.847110
  • Gupta, A., Verma, V., Kumar, A., Sharma, P., Gupta, M. K., & Meera, C. (2017). Stabilization of underactuated mechanical system using LQR technique. In R. Singh & S. Choudhury (Eds.), International conference on intelligent communication, control and devices (Advances in Intelligent Systems and Computing, Vol. 479, pp. 601–608). Springer.
  • He, B., Wang, S., & Liu, Y. J. (2019). Underactuated robotics: A review. International Journal of Advanced Robotic Systems, 16(4), 1–29. https://doi.org/10.1177/1729881419862164
  • Huang, Z. X., Lai, X. Z., Zhang, P., Meng, Q. X., & Wu, M. (2020). A general control strategy for planar 3-DoF underactuated manipulators with one passive joint. Information Sciences, 534(5), 139–153. https://doi.org/10.1016/j.ins.2020.05.002
  • Hussein, I. I., & Bloch, A. M. (2008). Optimal control of underactuated nonholonomic mechanical systems. IEEE Transactions on Automatic Control, 53(3), 668–682. https://doi.org/10.1109/TAC.2008.919853
  • Jeong, S., Lee, S., Hong, Y. D., & Chwa, D. (2016). Adaptive robust swing-up and balancing control of acrobot using a fuzzy disturbance observer. Journal of Institute of Control, Robotics and Systems, 22(5), 346–352. https://doi.org/10.5302/J.ICROS.2016.16.0025
  • Kim, S., & Kwon, S. J. (2020). Robust transition control of underactuated two-wheeled self-balancing vehicle with semi-online dynamic trajectory planning. Mechatronics, 68(2), 102366. https://doi.org/10.1016/j.mechatronics.2020.102366
  • Kong, S., Sun, J., Qiu, C., Wu, Z., & Yu, J. (2021). Extended state observer-based controller with model predictive governor for 3D trajectory tracking of underactuated underwater vehicles. IEEE Transactions on Industrial Informatics, 17(9), 6114–6124. https://doi.org/10.1109/TII.2020.3036665
  • Korayem, A. H., Nekoo, S. R., & Korayem, M. H. (2019). Sliding mode control design based on the state-dependent Riccati equation: Theoretical and experimental implementation. International Journal of Control, 92(9), 2136–2149. https://doi.org/10.1080/00207179.2018.1428769
  • Korayem, M. H., & Ghariblu, H. (2003). Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints. Robotics and Autonomous Systems, 44(2), 151–159. https://doi.org/10.1016/S0921-8890(03)00043-5
  • Korayem, M. H., Vatanjou, V. A., & Korayem, A. H. (2012). Maximum load determination of nonholonomic mobile manipulator using hierarchical optimal control. Robotica, 30(1), 53–65. https://doi.org/10.1017/S0263574711000336
  • Labrecque, P. D., Haché, J. M., Abdallah, M., & Gosselin, C. (2016). Low-impedance physical human-robot interaction using an active–passive dynamics decoupling. IEEE Robotics and Automation Letters, 1(2), 938–945. https://doi.org/10.1109/LRA.2016.2531124
  • Lai, X. Z., She, J. H., Yang, S. X., & Wu, M. (2009). Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 39(2), 389–398. https://doi.org/10.1109/TSMCB.2008.2005910
  • Lai, X. Z., Zhang, A. C., Wu, M., & She, J. H. (2015). Singularity-avoiding swing-up control for underactuated three-link gymnast robot using virtual coupling between control torques. International Journal of Robust and Nonlinear Control, 25(2), 207–221. https://doi.org/10.1002/rnc.3082
  • Lai, X. Z., Zhang, P., Y. W. Wang, Chen, L. F., & Wu, M. (2020). Continuous state feedback control based on intelligent optimization for first-order nonholonomic systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2534–2540. https://doi.org/10.1109/TSMC.2018.2820154
  • Liu, P., Huda, M., Sun, K., & Yu, H. (2020). A survey on underactuated robotic systems: Bio-inspiration, trajectory planning and control. Mechatronics, 72, 102443. https://doi.org/10.1016/j.mechatronics.2020.102443
  • Liu, Y., & Yu, H. N. (2013). A survey of underactuated mechanical systems. IET Control Theory & Applications, 7(7), 921–935. https://doi.org/10.1049/iet-cta.2012.0505
  • Liu, Y. N., & Xin, X. (2015). Set-point control for folded configuration of 3-link underactuated gymnastic planar robot: New results beyond the swing-up control. Multibody System Dynamics, 34(4), 349–372. https://doi.org/10.1007/s11044-014-9432-9
  • Liu, Y. N., & Xin, X. (2017). Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dynamics, 88(3), 1749–1768. https://doi.org/10.1007/s11071-017-3343-2
  • Mattioli, T., & Vendittelli, M. (2016). Interaction force reconstruction for humanoid robots. IEEE Robotics and Automation Letters, 2(1), 282–289. https://doi.org/10.1109/LRA.2016.2601345
  • Mobayen, S. (2016). Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems. Complexity, 21(5), 117–124. https://doi.org/10.1002/cplx.21636
  • Muñoz-Vázquez, A. J., Sánchez-Torres, J. D., Jiménez-Rodríguez, E., & Loukianov, A. G. (2019). Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 24(3), 1033–1040. https://doi.org/10.1109/TMECH.2019.2906289
  • Oriolo, G., & Nakamura, Y. (1991, December 11–13). Control of mechanical systems with second-order nonholonomic constraints: Underactuated manipulators.. IEEE conference on Decision and Control, Brighton, UK (pp. 2398–2403). IEEE. https://doi.org/10.1109/CDC.1991.261620
  • Ouyang, H. J. (2011). A hybrid control approach for pole assignment to second-order asymmetric systems. Mechanical Systems and Signal Processing, 25(1), 123–132. https://doi.org/10.1016/j.ymssp.2010.07.020
  • Peng, Z., Jiang, Y., & Wang, J. (2021). Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing. IEEE Transactions on Industrial Electronics, 68(4), 3402–3412. https://doi.org/10.1109/TIE.2020.2978713
  • Qi, R. H., Khajepour, A., & Melek, W. W. (2019). Modeling, tracking, vibration and balance control of an underactuated mobile manipulator (UMM). Control Engineering Practice, 93(4), 104159. https://doi.org/10.1016/j.conengprac.2019.104159
  • Salehizadeh, M., & Diller, E. D. (2021). Path planning and tracking for an underactuated two-microrobot system. IEEE Robotics and Automation Letters, 6(2), 2674–2681. https://doi.org/10.1109/LRA.2021.3062343
  • Selmic, R., & Lewis, F. (1997). Neural network approximation of piecewise continuous functions: Application to friction compensation. IEEE international symposium on Intelligent Control (pp. 227–232). IEEE.
  • Spong, M. W. (1995). The swing up control problem for the Acrobot. IEEE Control Systems, 15(1), 49–55. https://doi.org/10.1109/37.341864
  • Sun, N., Yang, T., Fang, Y. C., Lu, B., & Qian, Y. Z. (2018). Nonlinear motion control of underactuated three-dimensional boom cranes with hardware experiments. IEEE Transactions on Industrial Informatics, 14(3), 887–897. https://doi.org/10.1109/TII.2017.2754540
  • Tajdari, F., Khodabakhshi, E., Kabganian, M., & Golgouneh, A. (2017, December 22). Switching controller design to swing-up a two-link underactuated robot. IEEE international conference on Knowledge-based Engineering and Innovation, Tehran, Iran (pp. 0595–0599). IEEE. https://doi.org/10.1109/KBEI.2017.8324869
  • Tomás-Rodríguez, M., & Banks, S. P. (2010). Linear approximations to nonlinear dynamical systems. Springer.
  • Tuan, L. A., Lee, S. G., Ko, D. H., & Nho, L. C. (2014). Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. International Journal of Robust and Nonlinear Control, 24(18), 3372–3386. https://doi.org/10.1002/rnc.3061
  • Wang, L. J., Lai, X. Z., Zhang, P., & Wu, M. (2021). A control strategy based on trajectory planning and optimization for two-link underactuated manipulators in vertical plane. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2021.3070642
  • Wu, J. D., Ye, W. J., Wang, Y. W., & Su, C. Y. (2021). A general position control method for planar underactuated manipulators with second-order nonholonomic constraints. IEEE Transactions on Cybernetics, 51(9), 4733–4742. https://doi.org/10.1109/TCYB.2019.2951861
  • Xin, X. (2018). Linear strong structural controllability and observability of an n-link underactuated revolute planar robot with active intermediate joint or joints. Automatica, 94(11), 436–442. https://doi.org/10.1016/j.automatica.2018.04.050
  • Xin, X., & Yamasaki, T. (2011). Energy-based swing-up control for a remotely driven Acrobot: Theoretical and experimental results. IEEE Transactions on Control Systems Technology, 20(4), 1048–1056. https://doi.org/10.1109/TCST.2011.2159220
  • Yang, T., Sun, N., & Fang, Y. C. (2021). Adaptive fuzzy control for a class of MIMO underactuated systems with plant uncertainties and actuator deadzones: Design and experiments. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3050475
  • Yang, X. B., & Zheng, X. L. (2018). Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: Theory and experiments. IEEE Transactions on Industrial Electronics, 65(9), 7229–7238. https://doi.org/10.1109/TIE.2018.2793214
  • Yue, M., Ning, Y. G., Zhao, X. D., & Zong, G. D. (2018). Point stabilization control method for WIP vehicles based on motion planning. IEEE Transactions on Industrial Informatics, 15(6), 3368–3378. https://doi.org/10.1109/TII.2018.2875048
  • Zhang, A. C., Lai, X. Z., Wu, M., & She, J. H. (2017). Nonlinear stabilizing control for a class of underactuated mechanical systems with multi degree of freedoms. Nonlinear Dynamics, 89(3), 2241–2253. https://doi.org/10.1007/s11071-017-3582-2
  • Zhang, A. C., Qiu, J. L., Yang, C. D., & He, H. B. (2015). Stabilization of underactuated four-link gymnast robot using torque-coupled method. International Journal of Non-Linear Mechanics, 77(2), 299–306. https://doi.org/10.1016/j.ijnonlinmec.2015.09.002
  • Zhang, A. C., She, J. H., Lai, X. Z., & Wu, M. (2013). Motion planning and tracking control for an acrobot based on a rewinding approach. Automatica, 49(1), 278–284. https://doi.org/10.1016/j.automatica.2012.10.007
  • Zhang, C. J., Wang, C., Wei, Y. G., & Wang, J. Q. (2020). Robust trajectory tracking control for underactuated autonomous surface vessels with uncertainty dynamics and unavailable velocities. Ocean Engineering, 218(2), 108099. https://doi.org/10.1016/j.oceaneng.2020.108099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.