1,109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Space splitting convexification: a local solution method for nonconvex optimal control problems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 517-540 | Received 09 May 2021, Accepted 05 Nov 2021, Published online: 25 Nov 2021

References

  • Acikmese, B., & Blackmore, L. (2011). Lossless convexification of a class of optimal control problems with non-convex control constraints. Automatica, 47(2), 341–347. https://doi.org/10.1016/j.automatica.2010.10.037
  • Acikmese, B., & Ploen, S. R. (2007). Convex programming approach to powered descent guidance for Mars landing. Journal of Guidance, Control, and Dynamics, 30(5), 1353–1366. https://doi.org/10.2514/1.27553
  • Armaou, A., & Ataei, A. (2014). Piece-wise constant predictive feedback control of nonlinear systems. Journal of Process Control, 24(4), 326–335. https://doi.org/10.1016/j.jprocont.2014.02.002
  • Betts, J. T. (2010). Practical methods for optimal control and estimation using nonlinear programming (2nd ed.). Society for Industrial and Applied Mathematics.
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization (7th ed.). Cambridge University Press.
  • Carvalho, A., Gao, Y., Gray, A., Tseng, H. E., & Borrelli, F. (2013). Predictive control of an autonomous ground vehicle using an iterative linearization approach. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (p. 2335–2340). doi:10.1109/ITSC.2013.6728576
  • Chen, J., Zhan, W., & Tomizuka, M. (2017). Constrained iterative LQR for on-road autonomous driving motion planning. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (p. 1–7). doi:10.1109/ITSC.2017.8317745
  • Cibulka, V., Hanis, T., & Hromcik, M. (2019). Data-driven identification of vehicle dynamics using Koopman operator. https://arxiv.org/abs/1903.06103
  • Cibulka, V., Haniš, T., Korda, M., & Hromčík, M. (2020). Model predictive control of a vehicle using Koopman operator. IFAC-PapersOnLine, 53(2), 4228–4233. https://doi.org/10.1016/j.ifacol.2020.12.2469(21st IFAC World Congress)
  • d'Aspremont, A., & Boyd, S. (2003). Relaxations and randomized methods for nonconvex QCQPs. Retrieved November 24, Retrieved 2020, from https://web.stanford.edu/class/ee392o/relaxations.pdf.
  • Del Re, L., Chapuis, J., & Nevistic, V. (1993). Predictive control with embedded feedback linearization for bilinear plants with input constraints. Proceedings of 32nd IEEE Conference on Decision and Control (Vol. 4, p. 2984–2989). doi:10.1109/CDC.1993.325747
  • Diehl, M., Bock, H. G., & Schlöder, J. P. (2005). A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization, 43(5), 1714–1736. https://doi.org/10.1137/S0363012902400713
  • Di Pillo, G., & Grippo, L. (1989). Exact penalty functions in constrained optimization. SIAM Journal on Control and Optimization, 27(6), 1333–1360. https://doi.org/10.1137/0327068
  • Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575
  • Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007). Predictive active steering control for autonomous vehicle systems. IEEE Transactions on Control Systems Technology, 15(3), 566–580. https://doi.org/10.1109/TCST.2007.894653
  • Fang, Y., & Armaou, A. (2015). Nonlinear model predictive control using a bilinear Carleman linearization-based formulation for chemical processes. 2015 American Control Conference (ACC) (p. 5629–5634). doi:10.1109/ACC.2015.7172221
  • Ferreau, H., Almér, S., Verschueren, R., Diehl, M., Frick, D., Domahidi, A., Jerez, J.L., Stathopoulos, G., & Jones, C. (2017). Embedded optimization methods for industrial automatic control. IFAC-PapersOnLine, 50(1), 13194–13209. https://doi.org/10.1016/j.ifacol.2017.08.1946
  • Gros, S., Zanon, M., Quirynen, R., Bemporad, A., & Diehl, M. (2020). From linear to nonlinear MPC: Bridging the gap via the real-time iteration. International Journal of Control, 93(1), 62–80. https://doi.org/10.1080/00207179.2016.1222553
  • Gurobi Optimization (2020). Gurobi optimizer reference manual. Retrieved November 24, 2020, from https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf.
  • Han, S. P., & Mangasarian, O. L. (1979). Exact penalty functions in nonlinear programming. Mathematical programming, 17(1), 251–269. https://doi.org/10.1007/BF01588250
  • Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4, 373–395. https://doi.org/10.1007/BF02579150
  • Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 59(4), 849–904. https://doi.org/10.1137/16M1062569
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
  • Korda, M., & Mezić, I. (2018). Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93(1), 149–160. https://doi.org/10.1016/j.automatica.2018.03.046
  • Kozlov, M., Tarasov, S., & Khachiyan, L. (1980). The polynomial solvability of convex quadratic programming. USSR Computational Mathematics and Mathematical Physics, 20(5), 223–228. https://doi.org/10.1016/0041-5553(80)90098-1
  • Kurtz, M. J., & Henson, M. A. (1997). Input-output linearizing control of constrained nonlinear processes. Journal of Process Control, 7(1), 3–17. https://doi.org/10.1016/S0959-1524(96)00006-6
  • Liberti, L. (2008). Introduction to global optimization. Retrieved January 23, 2021, from https://www.lix.polytechnique.fr/liberti/teaching/globalopt-lima.pdf.
  • Liberti, L., & Maculan, N. (2006). Global optimization – from theory to implementation. Springer Science and Business Media.
  • Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Applications and Methods, 36, 628–647. https://doi.org/10.1002/oca.2123
  • Lipp, T., & Boyd, S. (2016). Variations and extension of the convex–concave procedure. Optimization and Engineering, 17, 263–287. https://doi.org/10.1007/s11081-015-9294-x
  • Mangasarian, O. L. (2015). A hybrid algorithm for solving the absolute value equation. Optimization Letters, 9, 1469–1474. https://doi.org/10.1007/s11590-015-0893-4
  • Mao, Y., Dueri, D., Szmuk, M., & Açíkmeşe, B. (2017). Successive Convexification of Non-Convex Optimal Control Problems with State Constraints. IFAC-PapersOnLine, 50(1), 4063–4069. https://doi.org/10.1016/j.ifacol.2017.08.789(20th IFAC World Congress)
  • Mao, Y., Szmuk, M., & Açíkmeşe, B. (2016). Successive convexification of non-convex optimal control problems and its convergence properties. 2016 IEEE 55th Conference on Decision and Control (CDC) (p. 3636–3641). https://doi.org/10.1109/CDC.2016.7798816
  • Maratos, N. (1978). Exact penalty function algorithms for finite dimensional and control optimization problems [Unpublished doctoral dissertation]. Imperial College London (University of London).
  • Mayne, D. Q. (1973). Differential dynamic programming – A unified approach to the optimization of dynamic systems. In C. Leondes (Ed.), Control and dynamic systems (Vol. 10, p. 179–254). Academic Press.
  • Mayne, D. Q., & Maratos, N. (1979). A first order, exact penalty function algorithm for equality constrained optimization problems. Mathematical Programming, 16(1), 303–324. https://doi.org/10.1007/BF01582118
  • Mollov, S., Babuska, R., Abonyi, J., & Verbruggen, H. B. (2004). Effective optimization for fuzzy model predictive control. IEEE Transactions on Fuzzy Systems, 12(5), 661–675. https://doi.org/10.1109/TFUZZ.2004.834812
  • Mollov, S., Babuška, R., Roubos, J., & Verbruggen, H. (1998). MIMO predictive control by multiple-step linearization of Takagi-Sugeno fuzzy models. IFAC Proceedings Volumes, 31(29), 197–202. https://doi.org/10.1016/S1474-6670(17)38944-9(7th IFAC Symposium on Artificial Intelligence in Real Time Control 1998., Grand Canyon National Park, USA, 5–8 October)
  • Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science and Business Media.
  • Park, J., & Boyd, S. (2017). General heuristics for nonconvex quadratically constrained quadratic programming. https://arxiv.org/abs/1703.07870
  • Perantoni, G., & Limebeer, D. J. (2014). Optimal control for a Formula One car with variable parameters. Vehicle System Dynamics, 52(5), 653–678. https://doi.org/10.1080/00423114.2014.889315
  • Raković, S. V., & Levine, W. S. (2018). Handbook of model predictive control. Springer.
  • Ryoo, H., & Sahinidis, N. (1995). Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers and Chemical Engineering, 19(5), 551–566. https://doi.org/10.1016/0098-1354(94)00097-2
  • Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard, L. (2010). Semi-active suspension control design for vehicles (1st ed.). Elsevier.
  • Schnelle, F., & Eberhard, P. (2015). Constraint mapping in a feedback linearization/MPC scheme for trajectory tracking of underactuated multibody systems. IFAC-PapersOnLine, 48(23), 446–451. https://doi.org/10.1016/j.ifacol.2015.11.319(5th IFAC Conference on Nonlinear Model Predictive Control NMPC 2015)
  • Sedlacek, T., Odenthal, D., & Wollherr, D. (2020a). Convexification of semi-activity constraints applied to minimum-time optimal control for vehicles with semi-active limited-slip differential. In 17th International Conference on Informatics in Control, Automation and Robotics – volume 1: Icinco (p. 15–25). SciTePress.
  • Sedlacek, T., Odenthal, D., & Wollherr, D. (2020b). Minimum-time optimal control for battery electric vehicles with four wheel-independent drives considering electrical overloading. Vehicle System Dynamics, 1–25. https://doi.org/10.1080/00423114.2020.1823004
  • Sedlacek, T., Odenthal, D., & Wollherr, D. (2020c). Minimum-time optimal control for vehicles with active rear-axle steering, transfer case and variable parameters. Vehicle System Dynamics, 59(8), 1227–1255. https://doi.org/10.1080/00423114.2020.1742925
  • Seki, H., Ooyama, S., & Ogawa, M. (2004). Nonlinear model predictive control using successive linearization. Transactions of the Society of Instrument and Control Engineers, E-3(1), 66–72. https://www.sice.jp/e-trans/papers/E3-9.pdf
  • Simon, D., Löfberg, J., & Glad, T. (2013). Nonlinear model predictive control using feedback linearization and local inner convex constraint approximations. 2013 European Control Conference (ECC) (p. 2056–2061). https://doi.org/10.23919/ECC.2013.6669575
  • Tanaka, K., & Wang, H. O. (2004). Fuzzy control systems design and analysis – a linear matrix inequality approach. John Wiley and Sons.
  • Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization of complex behaviors through online trajectory optimization. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (p. 4906–4913). https://doi.org/10.1109/IROS.2012.6386025
  • Tassa, Y., Mansard, N., & Todorov, E. (2014). Control-limited differential dynamic programming. 2014 IEEE International Conference on Robotics and Automation (ICRA) (p. 1168–1175). https://doi.org/10.1109/ICRA.2014.6907001
  • Tawarmalani, M., & Sahinidis, N. V. (2002). Convexification and global optimization in continuous and mixed-integer nonlinear programming - theory, algorithms, software, and applications. Springer Science and Business Media.
  • Verschueren, R. (2018). Convex approximation methods for nonlinear model predictive control [Unpublished doctoral dissertation]. University of Freiburg.
  • Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y
  • Xie, Z., Liu, C. K., & Hauser, K. (2017). Differential dynamic programming with nonlinear constraints. 2017 IEEE International Conference on Robotics and Automation (ICRA) (p. 695–702). https://doi.org/10.1109/ICRA.2017.7989086
  • Ye, J. J. (2004). Nondifferentiable multiplier rules for optimization and Bilevel optimization problems. SIAM Journal on Optimization, 15(1), 252–274. https://doi.org/10.1137/S1052623403424193
  • Zorich, V. A. (2016). Mathematical analysis I. Springer.