809
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Lyapunov stability analysis of discrete-time robust adaptive super-twisting sliding mode controller

ORCID Icon, ORCID Icon, , &
Pages 614-627 | Received 07 Aug 2021, Accepted 13 Nov 2021, Published online: 02 Dec 2021

References

  • Achili, B., Daachi, B., Amirat, Y., & Ali-Cherif, A. (2010). A robust adaptive control of a parallel robot. International Journal of Control, 83(10), 2107–2119. https://doi.org/10.1080/00207179.2010.505965
  • Anfinsen, H., & Aamo, O. M. (2017). Model reference adaptive control of n+ 1 coupled linear hyperbolic PDES. Systems & Control Letters, 109(9), 1–11. https://doi.org/10.1016/j.sysconle.2017.08.006
  • Astrom, K. J., & Witternmark, B. (1995). Adaptive control. Dover Publications.
  • Bayoumi, M., & Mo, L. (1989). Consistent parameter estimation in adaptive control for MIMO systems. International Journal of Control, 50(3), 1001–1012. https://doi.org/10.1080/00207178908953412
  • Boiko, I., & Fridman, L. (2005). Analysis of chattering in continuous sliding-mode controllers. IEEE Transactions on Automatic Control, 50(9), 1442–1446. https://doi.org/10.1109/TAC.2005.854655
  • Castillo, I., & Freidovich, L. B. (2020). Describing-function-based analysis to tune parameters of chattering reducing approximations of sliding mode controllers. Control Engineering Practice, 95(9), 104230. https://doi.org/10.1016/j.conengprac.2019.104230
  • Choi, Y., Chung, M. J., & Bien, Z. (1986). An adaptive control scheme for robot manipulators. International Journal of Control, 44(4), 1185–1191. https://doi.org/10.1080/00207178608933659
  • Evald, P. J. D. O., Hollweg, V., Tambara, R. V., & Gründling, H. A. (2021). A new discrete-time PI-RMRAC for grid-side currents control of grid-tied three-phase power converter. International Transactions on Electrical Energy Systems, 31(10), e12982. https://doi.org/10.1002/2050-7038.12982
  • Fei, J., & Chen, Y. (2021). Fuzzy double hidden layer recurrent neural terminal sliding mode control of single-phase active power filter. IEEE Transactions on Fuzzy Systems, 29(10), 3067–3081. https://doi.org/10.1109/TFUZZ.2020.3012760
  • Fei, J., & Feng, Z. (2020). Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural network. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12), 7692–7706. https://doi.org/10.1002/2050-7038.12982
  • Feng, Z., & Fei, J. (2018). Design and analysis of adaptive super-twisting sliding mode control for a microgyroscope. PloS One, 13(1), e0189457. https://doi.org/10.1371/journal.pone.0189457
  • Gandikota, G., & Das, D. K. (2019). Disturbance observer–based adaptive boundary layer sliding mode controller for a type of nonlinear multiple-input multiple-output system. International Journal of Robust and Nonlinear Control, 29(17), 5886–5912. https://doi.org/10.1002/rnc.v29.17
  • Ghamari, S. M., Mollaee, H., & Khavari, F. (2021). Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter. Measurement, 174(1), 109071. https://doi.org/10.1016/j.measurement.2021.109071
  • Golkani, M. A., Koch, S., Reichhartinger, M., & Horn, M. (2018). A novel saturated super-twisting algorithm. Systems & Control Letters, 119(6), 52–56. https://doi.org/10.1016/j.sysconle.2018.07.001
  • Gurumurthy, G., & Das, D. K. (2021). Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear systems. European Journal of Control, 57(6), 232–241. https://doi.org/10.1016/j.ejcon.2020.05.004
  • He, W., Namazi, M. M., Koofigar, H. R., Amirian, M. A., & Guerrero, J. M. (2021). Voltage regulation of buck converter with constant power load: An adaptive power shaping control. Control Engineering Practice, 115(1), 104891. https://doi.org/10.1016/j.conengprac.2021.104891
  • Hendel, R., Khaber, F., & Essounbouli, N. (2021). Adaptive high order sliding mode controller/observer based terminal sliding mode for MIMO uncertain nonlinear system. International Journal of Control, 94(2), 486–506. https://doi.org/10.1080/00207179.2019.1598580
  • Incremona, G. P., Cucuzzella, M., & Ferrara, A. (2016). Adaptive suboptimal second-order sliding mode control for microgrids. International Journal of Control, 89(9), 1849–1867. https://doi.org/10.1080/00207179.2016.1138241
  • Ioannou, P., & Tsakalis, K. (1986a). A robust direct adaptive controller. IEEE Transactions on Automatic Control, 31(11), 1033–1043. https://doi.org/10.1109/TAC.1986.1104168
  • Ioannou, P., & Tsakalis, K. (1986b). A robust discrete-time adaptive controller. In 25th IEEE Conference on Decision and Control (pp. 838–843). IEEE.
  • Jia, C., & Longman, R. W. (2021). An adaptive smooth second-order sliding mode repetitive control method with application to a fast periodic stamping system. Systems & Control Letters, 151(17), 104912. https://doi.org/10.1016/j.sysconle.2021.104912
  • Koch, S., & Reichhartinger, M. (2019). Discrete-time equivalents of the super-twisting algorithm. Automatica, 107(5), 190–199. https://doi.org/10.1016/j.automatica.2019.05.040
  • Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924–941. https://doi.org/10.1080/0020717031000099029
  • Li, N., Sun, H., & Zhang, Q. (2019). Robust passive adaptive fault tolerant control for stochastic wing flutter via delay control. European Journal of Control, 48(9), 74–82. https://doi.org/10.1016/j.ejcon.2019.04.008
  • Lozano-Leal, R., Collado, J., & Mondle, S. (1988). Model reference robust adaptive control without a priori knowledge of the high frequency gain. In 1988 American Control Conference (pp. 754–759). https://www.semanticscholar.org/paper/Model-Reference-Robust-Adaptive-Control-without-a-Lozano-Leal-Collado/7f224facb132fbdbe0aa321902bd05dd575e740f
  • Mokhtar, M., Marei, M. I., & Attia, M. A. (2021, in press). Hybrid SCA and adaptive controller to enhance the performance of grid-connected PV system. Ain Shams Engineering Journal, 12(4). https://doi.org/10.1016/j.asej.2021.03.019
  • Narendra, K. S. (2013). Adaptive and learning systems: theory and applications. Springer Science & Business Media.
  • Nath, A., Deb, D., & Dey, R. (2021). Robust observer-based adaptive control of blood glucose in diabetic patients. International Journal of Control, 94(11), 1–14. https://doi.org/10.1080/00207179.2020.1750705
  • Pongvthithum, R., Veres, S. M., Gabriel, S. B., & Rogers, E. (2005). Universal adaptive control of satellite formation flying. International Journal of Control, 78(1), 45–52. https://doi.org/10.1080/00207170412331330887
  • Pravika, M., & Jacob, J. (2021). Design of model reference adaptive–PID controller for automated portable duodopa pump in Parkinson's disease patients. Biomedical Signal Processing and Control, 68(12). https://doi.org/10.1016/j.bspc.2021.102590
  • Rabiee, H., Ataei, M., & Ekramian, M. (2019). Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica, 109(2), 108515. https://doi.org/10.1016/j.automatica.2019.108515
  • Shtessel, Y., Fridman, L., & Plestan, F. (2016). Adaptive sliding mode control and observation. International Journal of Control, 89(9), 1743–1746. https://doi.org/10.1080/00207179.2016.1194531
  • Tambara, R. V., Scherer, L. G., & Gründling, H. A. (2018). A discrete-time MRAC-SM applied to grid connected converters with LCL-filter. In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics. IEEE.
  • Tang, X., Li, M., Wei, S., & Ding, B. (2021). Event-triggered synchronous distributed model predictive control for multi-agent systems. International Journal of Control, Automation and Systems, 19(3), 1273–1282. https://doi.org/10.1007/s12555-019-0795-9
  • Tomei, P., & Verrelli, C. M. (2018). Advances on adaptive learning control: The case of non-minimum phase linear systems. Systems & Control Letters, 115(May), 55–62. https://doi.org/10.1016/j.sysconle.2018.03.006.
  • Turner, M. C., Sofrony, J., & Prempain, E. (2020). Anti-windup for model-reference adaptive control schemes with rate-limits. Systems & Control Letters, 137(3–4), 104630. https://doi.org/10.1016/j.sysconle.2020.104630
  • Yan, Y., Yu, S., & Yu, X. (2019). Quantized super-twisting algorithm based sliding mode control. Automatica, 105(10), 43–48. https://doi.org/10.1016/j.automatica.2019.03.002
  • Yang, D., Ren, W., & Liu, X. (2014). Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems. Systems & Control Letters, 72(8), 44–52. https://doi.org/10.1016/j.sysconle.2014.07.006
  • Zhang, X., Hu, W., Wei, C., & Xu, T. (2021). Nonlinear disturbance observer based adaptive super-twisting sliding mode control for generic hypersonic vehicles with coupled multisource disturbances. European Journal of Control, 57(5), 253–262. https://doi.org/10.1016/j.ejcon.2020.06.001
  • Zhao, Z., Gu, H., Zhang, J., & Ding, G. (2017). Terminal sliding mode control based on super-twisting algorithm. Journal of Systems Engineering and Electronics, 28(1), 145–150. https://doi.org/10.21629/JSEE.2017.01.16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.