650
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Continuous precise predefined-time attitude tracking control for a rigid spacecraft

, , & ORCID Icon
Pages 922-934 | Received 06 Apr 2021, Accepted 14 Dec 2021, Published online: 11 Jan 2022

References

  • Becerra, H., Vazquez, C., Arechavaleta, G., & Delfin, J. (2018). Predefined-time convergence control for high-order integrator systems using time base generators. IEEE Transactions on Control Systems Technology, 26(5), 1866–1873. https://doi.org/10.1109/TCST.87
  • Bhat, S., & Bernstein, D. (1998). Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control, 43(5), 678–682. https://doi.org/10.1109/9.668834
  • Bustan, D., Sani, S., & Pariz, N. (2014). Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Transactions on Mechatronics, 19(4), 1404–1411. https://doi.org/10.1109/TMECH.2013.2288314
  • Cao, L., Xiao, B., & Golestani, M. (2020). Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dynamics, 100(3), 2505–2519. https://doi.org/10.1007/s11071-020-05596-5
  • Carrington, C., & Junkins, J. (1986). Optimal nonlinear feedback control for spacecraft attitude maneuvers. Journal of Guidance, Control, and Dynamics, 9(1), 99–107. https://doi.org/10.2514/3.20073
  • Du, H., Zhang, J., Wu, D., Zhu, W., Li, H., & Chu, Z. (2020). Fixed-time attitude stabilization for a rigid spacecraft. ISA Transactions, 98(4), 263–270. https://doi.org/10.1016/j.isatra.2019.08.026
  • Feng, Y., Han, F., & Yu, X. (2014). Chattering free full-order sliding-mode control. Automatica, 50(4), 1310–1314. https://doi.org/10.1016/j.automatica.2014.01.004
  • Gao, S., Jing, Y., Liu, X., & Dimirovski, G. (2020). Chebyshev neural network-based attitude-tracking control for rigid spacecraft with finite-time convergence. International Journal of Control, 94(10), 2712–2729. https://doi.org/10.1080/00207179.2020.1734235
  • Gui, H., & Vukovich, G. (2017). Adaptive fault-tolerant spacecraft attitude control using a novel integral terminal sliding mode. International Journal of Robust and Nonlinear Control, 27(16), 3174–3196. https://doi.org/10.1002/rnc.v27.16
  • Guo, Y., Guo, J. H., & Song, S. M. (2017). Backstepping control for attitude tracking of the spacecraft under input saturation. Acta Astronautica, 138(4), 318–325. https://doi.org/10.1016/j.actaastro.2017.06.002
  • Hu, Q., Chen, W., & Guo, L. (2019). Fixed-time maneuver control of spacecraft autonomous rendezvous with a free-tumbling target. IEEE Transactions on Aerospace and Electronic Systems, 55(2), 562–577. https://doi.org/10.1109/TAES.7
  • Hu, Q., Xiao, L., & Wang, C. (2019). Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties. Chinese Journal of Aeronautics, 32(3), 674–687. https://doi.org/10.1016/j.cja.2018.12.015
  • Huang, B., Li, A. J., Guo, Y., & Wang, C. Q. (2018). Fixed-time attitude tracking control for spacecraft without unwinding. Acta Astronautica, 151(1), 818–827. https://doi.org/10.1016/j.actaastro.2018.04.041
  • Jiang, B., Li, C., Hou, S., & Ma, G. (2020). Fixed-time attitude tracking control for spacecraft based on adding power integrator technique. International Journal of Rubost Nonlinear Control, 30(4), 2515–2532. https://doi.org/10.1002/rnc.v30.6
  • Jiménez-Rodríguez, E., Muñoz Vázquez, A., Sánchez-Torres, J., Defoort, M., & Loukianov, A. (2020). A Lyapunov-Like characterization of predefined-time stability. IEEE Transactions on Automatic Control, 65(11), 4922–4927. https://doi.org/10.1109/TAC.9
  • Jiménez-Rodríguez, E., Sánchez-Torres, J., & Loukianov, A. (2017). On optimal predefined-time stabilization. International Journal of Robust and Nonlinear Control, 27(17), 3620–3642. https://doi.org/10.1002/rnc.3757
  • Kang, W. (1995). Nonlinear H ∞ control and its application to rigid spacecraft nonlinear h ∞ control and its application to rigid spacecraft. IEEE Transactions on Automatic Control, 40(7), 1281–1285. https://doi.org/10.1109/9.400476
  • Lee, D. (2017). Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dynamics, 88(2), 1317–1328. https://doi.org/10.1007/s11071-016-3312-1
  • Li, B., Hu, Q., Yang, Y., & Postolache, O. (2019). Finite-time disturbance observer based integral sliding mode control for attitude stabilisation under actuator failure. IET Control Theory and Applications, 13(1), 50–58. https://doi.org/10.1049/cth2.v13.1
  • Liu, M., Shao, X., & Ma, G. (2019). Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds. Aerospace Science and Technology, 92(4), 337–346. https://doi.org/10.1016/j.ast.2019.06.017
  • Luo, W., Chu, Y., & Ling, K. (2005). H-infinity inverse optimal attitude-tracking control of rigid spacecraft. Journal of Guidance, Control, and Dynamics, 28(3), 481–494. https://doi.org/10.2514/1.6471
  • Muñoz Vázquez, A., Sánchez-Torres, J., Gutėrrez-Alcalá, S., Jiménez-Rodríguez, E., & Loukianov, A. (2019). Predefined-time robust contour tracking of robotic manipulators. Journal of the Franklin Institute, 356(5), 2709–2722. https://doi.org/10.1016/j.jfranklin.2019.01.041
  • Munoz-Vazquez, A., Sanchez-Torres, J., Jimenez-Rodriguez, E., & Loukianov, A. (2019). Predefined-Time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 24(3), 1033–1040. https://doi.org/10.1109/TMECH.3516
  • Polyakov, A. (2012). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 57(8), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869
  • Polyakov, A., Efimov, D., & Perruquetti, W. (2015). Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica, 51(4), 332–340. https://doi.org/10.1016/j.automatica.2014.10.082
  • Sánchez-Torres, J., Defoort, M., & Muñoz Vázquez, A. (2020). Predefined-time stabilisation of a class of nonholonomic systems. International Journal of Control, 93(12), 2941–2948. https://doi.org/10.1080/00207179.2019.1569262
  • Sánchez-Torres, J., Gómez-Gutiérrez, D., López, E., & Loukianov, A. (2018). A class of predefined-time stable dynamical systems. IMA Journal of Mathematical Control and Information, 35(1), I1–I29. https://doi.org/10.1093/imamci/dnx004
  • Sánchez-Torres, J., Muñoz Vázquez, A., Defoort, M., Jiménez-Rodríguez, E., & Loukianov, A. (2020). A class of predefined-time controllers for uncertain second-order systems. European Journal of Control, 53(12), 52–58. https://doi.org/10.1016/j.ejcon.2019.10.003
  • Shao, S., Zong, Q., Tian, B., & Wang, F. (2017). Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement. Journal of the Franklin Institute, 354(12), 4656–4674. https://doi.org/10.1016/j.jfranklin.2017.04.020
  • Shi, X. N., Zhou, Z. G., & Zhou, D. (2018). Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates. International Journal of Control, 91(6), 1325–1337. https://doi.org/10.1080/00207179.2017.1314020
  • Song, Z., Duan, C., Wang, J., & Wu, Q. (2019). Chattering-free full-order recursive sliding mode control for finite-time attitude synchronization of rigid spacecraft. Journal of the Franklin Institute, 356(2), 998–1020. https://doi.org/10.1016/j.jfranklin.2018.02.013
  • Su, J., & Cai, K. Y. (2011). Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking. Journal of Guidance, Control, and Dynamics, 34(4), 1260–1264. https://doi.org/10.2514/1.52301
  • Sun, L., & Zheng, Z. (2019). Saturated adaptive hierarchical fuzzy attitude-Tracking control of rigid spacecraft with modeling and measurement uncertainties. IEEE Transactions on Industrial Electronics, 66(5), 3742–3751. https://doi.org/10.1109/TIE.2018.2856204
  • Wang, F., Miao, Y., Li, C., & Hwang, I. (2020). Attitude control of rigid spacecraft with predefined-time stability. Journal of the Franklin Institute, 357(7), 4212–4221. https://doi.org/10.1016/j.jfranklin.2020.01.001
  • Xia, K., & Zou, Y. (2020). Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dynamics, 100(3), 2521–2535. https://doi.org/10.1007/s11071-020-05634-2
  • Yin, Z., Suleman, A., Luo, J., & Wei, C. (2019). Appointed-time prescribed performance attitude tracking control via double performance functions. Aerospace Science and Technology, 93(1), 105337. https://doi.org/10.1016/j.ast.2019.105337
  • Yu, S., Yu, X., Shirinzadeh, B., & Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), 1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001
  • Yu, Z., Liu, Z., Zhang, Y., Qu, Y., & Su, C. Y. (2020). Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 2077–2091. https://doi.org/10.1109/TNNLS.5962385
  • Zhao, K., Song, Y., Ma, T., & He, L. (2018). Prescribed performance control of uncertain euler-lagrange systems subject to full-state constraints. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3478–3489. https://doi.org/10.1109/TNNLS.2017.2736640
  • Zhao, L., & Jia, Y. (2015). Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. International Journal of Control, 88(6), 1150–1162. https://doi.org/10.1080/00207179.2014.996854
  • Zhou, Z. G., Zhou, D., Shi, X. N., Li, R. F., & Kan, B. Q. (2021). Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation. International Journal of Control, 94(1), 223–234. https://doi.org/10.1080/00207179.2019.1590644
  • Zou, A. M. (2014). Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Transactions on Control Systems Technology, 22(1), 338–345. https://doi.org/10.1109/TCST.2013.2246836
  • Zou, A. M., & Fan, Z. (2020). Fixed-time attitude tracking control for rigid spacecraft without angular velocity measurements. IEEE Transactions on Industrial Electronics, 67(8), 6795–6805. https://doi.org/10.1109/TIE.41
  • Zou, A. M., Kumar, K., & de Ruiter, A. (2020). Fixed-time attitude tracking control for rigid spacecraft. Automatica, 113(4), 108792. https://doi.org/10.1016/j.automatica.2019.108792
  • Zou, Y. (2016). Attitude tracking control for spacecraft with robust adaptive RBFNN augmenting sliding mode control. Aerospace Science and Technology, 56(12), 197–204. https://doi.org/10.1016/j.ast.2016.07.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.