203
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel unified framework for solving reachability and invariance problems

, , &
Pages 1436-1447 | Received 12 May 2021, Accepted 01 Mar 2022, Published online: 23 Mar 2022

References

  • Asarin, E., Bournez, O., Dang, T., & Maler, O. (2000). Approximate reachability analysis of piecewise-linear dynamical systems. In N. Lynch & B. H. Krogh (Eds), Hybrid systems: Computation and control. HSCC 2000. Lecture Notes in Computer Science, Vol. 1790. Springer. https://doi.org/10.1007/3-540-46430-1_6
  • Baier, R., Büskens, C., Chahma, I. A., & Gerdts, M. (2007). Approximation of reachable sets by direct solution methods for optimal control problems. Optimization Methods and Software, 22(3), 433–452. https://doi.org/10.1080/10556780600604999
  • Baier, R., Gerdts, M., & Xausa, I. (2013). Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 3(3), 519–548. https://doi.org/10.3934/naco
  • Bansal, S., Chen, M., Herbert, S., & Tomlin, C. J. (2017). Hamilton-Jacobi reachability: A brief overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 2242–2253). IEEE.
  • Bansal, S., Chen, M., Tanabe, K., & Tomlin, C. J. (2021). Provably safe and scalable multivehicle trajectory planning. IEEE Transactions on Control Systems Technology, 29(6), 2473–2489. https://doi.org/10.1109/TCST.2020.3042815.
  • Chen, M., Herbert, S. L., Vashishtha, M. S., Bansal, S., & Tomlin, C. J. (2018). Decomposition of reachable sets and tubes for a class of nonlinear systems. IEEE Transactions on Automatic Control, 63(11), 3675–3688. https://doi.org/10.1109/TAC.2018.2797194.
  • Chutinan, A., & Krogh, B. H. (2003). Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control, 48(1), 64–75. https://doi.org/10.1109/TAC.2002.806655
  • Dhinakaran, A., Chen, M., Chou, G., Shih, J. C., & Tomlin, C. J. (2017). A hybrid framework for multi-vehicle collision avoidance. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 2979–2984). IEEE.
  • Gan, T., Chen, M., Li, Y., Xia, B., & Zhan, N. (2018). Reachability analysis for solvable dynamical systems. IEEE Transactions on Automatic Control, 63(7), 2003–2018. https://doi.org/10.1109/TAC.2017.2763785.
  • Helsen, R., van Kampen, E. J., C. C. de Visser, & Chu, Q. (2016). Distance-fields-over-grids method for aircraft envelope determination. Journal of Guidance, Control, and Dynamics, 39(7), 1470–1480. https://doi.org/10.2514/1.G000824.
  • Herbert, S. (2019). helperoc. Retrieved December 15, 2020, from https://github.com/HJReachability/helperOC.
  • Iannelli, A., Marcos, A., & Lowenberg, M. (2019). Robust estimations of the region of attraction using invariant sets. Journal of the Franklin Institute, 356(8), 4622–4647. https://doi.org/10.1016/j.jfranklin.2019.02.013.
  • Jaccard, P. (1912). The distribution of the flora in the alpine zone.1. New Phytologist, 11(2), 37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.
  • Kaynama, S., & Oishi, M. (2011). Complexity reduction through a Schur-based decomposition for reachability analysis of linear time-invariant systems. International Journal of Control, 84(1), 165–179. https://doi.org/10.1080/00207179.2010.543703.
  • Khalil, H. (2001). Nonlinear systems (3rd ed.). Prentice-Hall Inc.
  • Kitsios, I., & Lygeros, J. (2005). Launch-pad abort flight envelope computation for a personnel launch vehicle using reachability. In Aiaa Guidance, Navigation, and Control Conference and Exhibit (p. 6150). AIAA.
  • Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In N. Lynch and B.H. Krogh (Eds.), Hybrid Systems: Computation and Control (pp. 202–214). Springer.
  • Leung, K., Schmerling, E., Zhang, M., Chen, M., Talbot, J., Gerdes, J. C., & Pavone, M. (2020). On infusing reachability-based safety assurance within planning frameworks for human–robot vehicle interactions. The International Journal of Robotics Research, 39(10–11), 1326–1345. https://doi.org/10.1177/0278364920950795
  • Li, A., & Chen, M. (2020). Guaranteed-safe approximate reachability via state dependency-based decomposition. In 2020 American Control Conference (ACC) (pp. 974–980). IEEE.
  • Lombaerts, T., Schuet, S., Wheeler, K., Acosta, D. M., & Kaneshige, J. (2013). Safe maneuvering envelope estimation based on a physical approach. In Aiaa Guidance, Navigation, and Control (GNC) Conference (p. 4618). AIAA.
  • Lygeros, J. (2004). On reachability and minimum cost optimal control. Automatica, 40(6), 917–927. https://doi.org/10.1016/j.automatica.2004.01.012.
  • Maidens, J. N., Kaynama, S., Mitchell, I. M., Oishi, M. M., & Dumont, G. A. (2013). Lagrangian methods for approximating the viability kernel in high-dimensional systems. Automatica, 49(7), 2017–2029. https://doi.org/10.1016/j.automatica.2013.03.020
  • Mitchell, I. M. (2002). Application of level set methods to control and reachability problems in continuous and hybrid systems. Stanford University.
  • Mitchell, I. M. (2007). A toolbox of level set methods. UBC Department of Computer Science Technical Report TR-2007-11.
  • Mitchell, I. M. (2008). The flexible, extensible and efficient toolbox of level set methods. Journal of Scientific Computing, 35(2), 300–329. https://doi.org/10.1007/s10915-007-9174-4
  • Mitchell, I. M., Bayen, A. M., & Tomlin, C. J. (2005). A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control, 50(7), 947–957. https://doi.org/10.1109/TAC.2005.851439.
  • Nabi, H. N., Lombaerts, T., Zhang, Y., van Kampen, E., Chu, Q. P., & C. C. de Visser (2018). Effects of structural failure on the safe flight envelope of aircraft. Journal of Guidance, Control, and Dynamics, 41(6), 1257–1275. https://doi.org/10.2514/1.G003184.
  • Ogata, K. (2010). Modern control engineering. Prentice Hall.
  • Sadien, E., Roos, C., Birouche, A., Carton, M., Grimault, C., Romana, L. E., & Basset, M. (2020). A simple and efficient control allocation scheme for on-ground aircraft runway centerline tracking. Control Engineering Practice, 95(3), 104228. https://doi.org/10.1016/j.conengprac.2019.104228
  • Serry, M. (2021). Convergent under-approximations of reachable sets and tubes: A piecewise constant approach. Journal of the Franklin Institute, 358(6), 3215–3231. https://doi.org/10.1016/j.jfranklin.2021.02.015.
  • Stapel, J., De Visser, C., Van Kampen, E. J., & Chu, Q. (2016, January). Efficient methods for flight envelope estimation through reachability analysis.
  • Tanabe, K., & Chen, M. (2019). Beacls: Berkeley efficient api in c++ for level set methods. Retrieved December 15, 2020, from https://github.com/HJReachability/beacls.
  • Trontis, A., & Spathopoulos, M. P. (2003). Hybrid control synthesis for eventuality specifications using level set methods. International Journal of Control, 76(16), 1599–1627. https://doi.org/10.1080/00207170310001622512.
  • Xu, Z., Su, H., Shi, P., Lu, R., & Wu, Z. (2017). Reachable set estimation for Markovian jump neural networks with time-varying delays. IEEE Transactions on Cybernetics, 47(10), 3208–3217. https://doi.org/10.1109/TCYB.2016.2623800.
  • Yin, Q., Nie, H., & Wei, X. (2020). Dynamics and directional stability of high-speed unmanned aerial vehicle ground taxiing process. Journal of Aircraft, 57(4), 689–701. https://doi.org/10.2514/1.C035829.
  • Yin, Q., Nie, H., Wei, X., & Zhang, M. (2020). Aircraft electric anti-skid braking and combined direction control system using co-simulation and experimental methods. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(2), 173–191. https://doi.org/10.1177/0954410019852825
  • Yong, J., & Zhou, X. Y. (1999). Dynamic programming and HJB equations. In Stochastic controls: Hamiltonian systems and HJB equations (pp. 157–215). Springer. https://doi.org/10.1007/978-1-4612-1466-3_4
  • Zhang, Y., de Visser, C. C., & Chu, Q. P. (2019). Database building and interpolation for an online safe flight envelope prediction system. Journal of Guidance, Control, and Dynamics, 42(5), 1166–1174. https://doi.org/10.2514/1.G003834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.