631
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Improved stability conditions for time-varying delay systems via relaxed Lyapunov functionals

ORCID Icon, , &
Pages 1568-1581 | Received 09 Jul 2021, Accepted 08 Mar 2022, Published online: 31 Mar 2022

References

  • Chen, J., Xu, S., & Zhang, B. (2017). Single/multiple integral inequalities with applications to stability analysis of time-delay systems. IEEE Transactions on Automatic Control, 62(7), 3488–3493. https://doi.org/10.1109/TAC.2016.2617739
  • Chen, Z., Han, Q., Yan, Y., & Wu, Z. (2020). How often should one update control and estimation: Review of networked triggering techniques. Science China Information Sciences, 63(5), 150201. https://doi.org/10.1007/s11432-019-2637-9
  • Chen, J., Sun, J., & Wang, G. (2022). From unmanned systems to autonomous intelligent systems. Engineering. https://doi.org/10.1016/j.eng.2021.10.007
  • de Oliveira, F. S. S., & Souza, F. O. (2020). Improved delay-dependent stability criteria for linear systems with multiple time-varying delays. International Journal of Control, 94(12), 3415–3423. http://doi.org/10.1016/j.amc.2019.124866
  • Ding, S., Wang, Z., & Zhang, H. (2016). Wirtinger-based multiple integral inequality for stability of time-delay systems. International Journal of Control, 91(1), 12–18. https://doi.org/10.1080/00207179.2016.1266516
  • Fridman, E. (2014). Introduction to time-delay systems: Analysis and control. Birkhouser.
  • Gu, K., Chen, J., & Kharitonov, V. L. (2003). Stability of time-delay systems. Birkhauser.
  • Han, X. Z. Q., Seuret, A., & Gouaisbaut, F. (2017). An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica, 84(3), 221–226. https://doi.org/10.1016/j.automatica.2017.04.048
  • He, Y., Wang, Q., Lin, C., & Wu, M. (2005). Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. International Journal of Robust and Nonlinear Control, 15(18), 923–933. https://doi.org/10.1002/(ISSN)1099-1239
  • Huo, M., Duan, H., & Ding, X. (2021). Manned aircraft and unmanned aerial vehicle heterogeneous formation flight control via heterogeneous pigeon flock consistency. Unmanned Systems, 9(3), 227–236. https://doi.org/10.1142/S2301385021410053
  • Kim, J. (2016). Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica, 64, 121–125. https://doi.org/10.1016/j.automatica.2015.08.025
  • Ko, K., Lee, W., Park, P., & Sung, D. (2018). Delays-dependent region partitioning approach for stability criterion of linear systems with multiple time-varying delays. Automatica, 87(4), 389–394. https://doi.org/10.1016/j.automatica.2017.09.003
  • Kwon, W., Koo, B., & Lee, S. (2018). Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems. Applied Mathematics and Computation, 320(10), 149–157. https://doi.org/10.1016/j.amc.2017.09.036
  • Lee, T. H., & Park, J. H. (2017). A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function. Automatica, 80(5), 239–242. https://doi.org/10.1016/j.automatica.2017.02.004
  • Lee, T. H., Park, J. H., & Xu, S. (2017). Relaxed conditions for stability of time-varying delay systems. Automatica, 75(10), 11–15. https://doi.org/10.1016/j.automatica.2016.08.011
  • Lee, W. I., Lee, S. Y., & Park, P. (2018). Affine Bessel–Legendre inequality: Application to stability analysis for systems with time-varying delays. Automatica, 93(7), 535–539. https://doi.org/10.1016/j.automatica.2018.03.073
  • Li, Z., Yan, H., Zhang, H., Peng, Y., Park, J., & He, Y. (2020). Stability analysis of linear systems with time-varying delay via intermediate polynomial-based functions. Automatica, 113(2), 108756. http://doi.org/10.1016/j.automatica.2019.108756
  • Li, Z., Yan, H., Zhang, H., Zhan, X., & Huang, C. (2019). Improved inequality-based functions approach for stability analysis of time delay system. Automatica, 108, 138–145.http://doi.org/10.1016/j.automatica.2019.05.033
  • Li, Z., Yan, H., Zhang, H., Zhang, X., & Huang, C. (2018). Stability analysis for delayed neural networks via improved auxiliary polynomial-based functions. IEEE Transactions on Neural Networks and Learning Systems, 30(8), 2562–2568. https://doi.org/10.1109/TNNLS.5962385
  • Liu, H., Wang, Y., & Li, X. (2021). New results on stability analysis of neutral-type delay systems. International Journal of Control, 1–8. https://doi.org/10.1080/00207179.2021.1909750
  • Liu, K., Seuret, A., & Xia, Y. (2017). Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality. Automatica, 76(14), 138–142. https://doi.org/10.1016/j.automatica.2016.11.001
  • Liu, K., Seuret, A., Xia, Y., Gouaisbaut, F., & Ariba, Y. (2019). Bessel–Laguerre inequality and its application to systems with infinite distributed delays. Automatica, 109(1), 108562. https://doi.org/10.1016/j.automatica.2019.108562
  • Park, P., Ko, J. W., & Jeong, C. (2011). Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014
  • Park, P., Lee, W. I., & Lee, S. Y. (2015). Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. Journal of the Franklin Institute, 352(4), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004
  • Peet, M. M., Papachristodoulou, A., & Lall, S. (2009). Positive forms and stability of linear time-delay systems. SIAM Journal on Control and Optimization, 47(6), 3237–3258. https://doi.org/10.1137/070706999
  • Seuret, A., & Gouaisbaut, F. (2013). Wirtinger-based integral inequality: Application to time-delay systems. Automatica, 49(9), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030
  • Seuret, A., & Gouaisbaut, F. (2018). Stability of linear systems with time-varying delays using Bessel–Legendre inequalities. IEEE Transactions on Automatic Control, 63(1), 225–232. https://doi.org/10.1109/TAC.2017.2730485
  • Seuret, A., Liu, K., & Gouaisbaut, F. (2018). Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica, 95(11), 488–493. https://doi.org/10.1016/j.automatica.2018.06.017
  • Sheng, Z., Lin, C., Chen, B., & Wang, Q. (2021). Asymmetric Lyapunov–Krasovskii functional method on stability of time-delay systems. International Journal of Robust and Nonlinear Control, 31(7), 2847–2854. https://doi.org/10.1002/rnc.v31.7
  • Sun, J., & Chen, J. (2017). A survey on Lyapunov-based methods for stability of linear time-delay systems. Frontiers of Computer Science, 11(4), 555–567. https://doi.org/10.1007/s11704-016-6120-3
  • Sun, J., Liu, G. P., Chen, J., & Rees, D. (2010). Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica, 46(2), 466–470. https://doi.org/10.1016/j.automatica.2009.11.002
  • Wang, X., Berberich, J., Sun, J., Wang, G., Allgöwer, F., & Chen, J. (2022). Data-driven control of event- and self-triggered discrete-time systems. Preprint arXiv:2202.08019.
  • Wang, X., Sun, J., Berberich, J., Wang, G., Allgower, F., & Chen, J. (2021). Data-driven control of dynamic event-triggered systems with delays. Preprint arXiv:2110.12768.
  • Wang, X., Sun, J., & Dou, L. (2021). Improved results on stability analysis of sampled-data systems. International Journal of Robust and Nonlinear Control, 31(14), 6549–6561. https://doi.org/10.1002/rnc.v31.14
  • Wang, X., Sun, J., Wang, G., & Dou, L. (2021). A mixed switching event-triggered transmission scheme for networked control systems. IEEE Transactions on Control of Network Systems, 1–10. http://doi.org/10.1109/TCNS.2021.3106447
  • Wu, B., & Wang, C. (2019). A generalized multiple-integral inequality and its application on stability analysis for time-varying delay systems. Journal of the Franklin Institute, 356(7), 4026–4042. https://doi.org/10.1016/j.jfranklin.2019.02.003
  • Xiao, W., Yu, J., Wang, R., Dong, X., Li, Q., & Ren, Z. (2019). Time-varying formation control for time-delayed multi-agent systems with general linear dynamics and switching topologies. Unmanned Systems, 7(1), 3–13. https://doi.org/10.1142/S2301385019400016
  • Xu, D., & Zhu, H. (2021). Proactive eavesdropping of wireless powered suspicious interference networks. Science China Information Sciences, 64(12), 229305. https://doi.org/10.1007/s11432-020-2992-3
  • Yang, B., Yan, Z., Pan, X., & Zhao, X. (2021). Improved stability criteria for linear systems with time-varying delays. Journal of the Franklin Institute, 358(15), 7804–7824. https://doi.org/10.1016/j.jfranklin.2021.07.045
  • Zeng, H., He, Y., & Kok, L. (2021). Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica, 138, 110030. https://doi.org/10.1016/j.automatica.2021.110030
  • Zeng, H., He, Y., Wu, M., & She, J. (2015a). Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Transactions on Automatic Control, 60(10), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271
  • Zeng, H., He, Y., Wu, M., & She, J. (2015b). New results on stability analysis for systems with discrete distributed delay. Automatica, 60(1), 189–192. https://doi.org/10.1016/j.automatica.2015.07.017
  • Zhang, C., He, Y., Jiang, L., & Wu, M. (2017). Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov–Krasovskii functionals. IEEE Transactions on Automatic Control, 62(10), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381
  • Zhang, C., He, Y., Jiang, L., Wu, M., & Wang, Q. (2017). An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica, 85(10), 481–485. https://doi.org/10.1016/j.automatica.2017.07.056
  • Zhang, R., Zeng, D., Park, J., Zhong, S., Liu, Y., & Zhou, X. (2019). New approaches to stability analysis for time-varying delay systems. Journal of the Franklin Institute, 356(7), 4174–4189. https://doi.org/10.1016/j.jfranklin.2019.02.029
  • Zhang, T., You, B., & Liu, G. (2020). Motion coordination for a class of multi-agents via networked predictive control. Journal of Systems Science and Complexity, 33(3), 622–639. https://doi.org/10.1007/s11424-020-8122-3
  • Zhang, X., Zhao, N., & Shi, P. (2017). Necessary conditions of exponential stability for a class of linear neutral-type time-delay systems. International Journal of Control, 92(6), 1289–1297. https://doi.org/10.1080/00207179.2017.1390259

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.