165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

PD with neuro-adaptive compensation control using the signed power function

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1638-1649 | Received 14 Jun 2021, Accepted 31 Mar 2022, Published online: 15 Apr 2022

References

  • Åström, K. J., & Wittenmark, B. (2013). Adaptive control: Second Edition. Dover Publications.
  • Baghbani, F., Akbarzadeh-T, M.-R., Naghibi-Sistani, M.-B., & Akbarzadeh, A. (2020, March). Emotional neural networks with universal approximation property for stable direct adaptive nonlinear control systems. Engineering Applications of Artificial Intelligence, 89, article ID: 103447. https://doi.org/10.1016/j.engappai.2019.103447
  • Campa, R., Kelly, R., & Santibañez, V. (2004). Windows-based real-time control of direct-drive mechanisms: platform description and experiments. Mechatronics, 14(9), 1021–1036. https://doi.org/10.1016/j.mechatronics.2004.04.004
  • Dawson, D. M., Abdallah, C. T., & Lewis, F. L. (2003). Robot manipulator control: Theory and practice. CRC Press.
  • Edwards, C., & Shtessel, Y. B. (2016, March). Adaptive continuous higher order sliding mode control. Automatica, 65, 183–190. https://doi.org/10.1016/j.automatica.2015.11.038.
  • Farrell, J., & Polycarpou, M. (2006). Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approaches, Adaptive and cognitive dynamic systems: Signal processing, learning, communications and control, Wiley.
  • Formentin, S., Piga, D., Tóth, R., & Savaresi, S. M. (2016). Direct learning of LPV controllers from data. Automatica, 65(9), 98–110. https://doi.org/10.1016/j.automatica.2015.11.031
  • Franco, R., Ríos, H., & de Loza, A. F. (2019). A model reference adaptive continuous sliding-mode control. In 2019 IEEE 58th conference on decision and control (CDC) (pp. 96–101). IEEE. https://doi.org/10.1109/CDC40024.2019.9029291
  • Goodwin, G., & Sin, K. (1984). Adaptive filtering prediction and control, Information and systems sciences series. Prentice-Hall.
  • Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall.
  • He, W., Chen, Y., & Yin, Z. (2016). Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Transactions on Cybernetics, 46(3), 620–629. https://doi.org/10.1109/TCYB.2015.2411285
  • Kelly, R., Santibáñez, V., & Loría, A. (2006). Control of robot manipulators in joint space, Advanced textbooks in control and signal processing. Springer London.
  • Khalil, H. (2002). Nonlinear systems. Prentice Hall.
  • Kwan, C., Dawson, D., & Lewis, F. (1995). Robust adaptive control of robots using neural network: Global tracking stability. In Proceedings of 1995 34th IEEE conference on decision and control (Vol. 2, pp. 1846–1851). IEEE.
  • Landau, I., Lozano, R., M'Saad, M., & Karimi, A. (2011). Adaptive control: Algorithms, analysis and applications, Communications and control engineering, Springer London.
  • Lewis, F. (1999). Nonlinear network structures for feedback control. Asian Journal of Control, 1(4), 205–228. https://doi.org/10.1111/asjc.1999.1.issue-4
  • Lewis, F. L., & Ge, S. S. (2006). Neural networks in feedback control systems (pp. 791–825). John Wiley & Sons, Ltd.
  • Lewis, F. L., Yesildirak, A., & Jagannathan, S. (1998). Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, Inc.
  • Li, X.-l., Zhang, X.-f., Jia, C., & Liu, D.-x. (2014). Multi-model adaptive control based on fuzzy neural networks. Journal of Intelligent & Fuzzy Systems, 27(2), 965–975. https://doi.org/10.3233/IFS-131057
  • Liu, C., Zhao, Z., & Wen, G. (2019). Adaptive neural network control with optimal number of hidden nodes for trajectory tracking of robot manipulators. Neurocomputing, 350(11), 136–145. https://doi.org/10.1016/j.neucom.2019.03.043
  • Luan, F., Na, J., Huang, Y., & Gao, G. (2019). Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence. Neurocomputing, 337(2), 153–164. https://doi.org/10.1016/j.neucom.2019.01.063
  • Miller, W. T., Sutton, R. S., & Werbos, P. J. (1991). Neural networks for control. The MIT Press.
  • Montoya–Cháirez, J., Santibáñez, V., & Moreno–Valenzuela, J. (2019). Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom. Mechatronics, 57(12), 73–85. https://doi.org/10.1016/j.mechatronics.2018.11.011
  • Moreno, J. A., Negrete, D. Y., Torres-González, V., & Fridman, L. (2016). Adaptive continuous twisting algorithm. International Journal of Control, 89(9), 1798–1806. https://doi.org/10.1080/00207179.2015.1116713
  • Moreno-Valenzuela, J., Aguilar-Avelar, C., Puga-Guzmán, S. A., & Santibáñez, V. (2016). Adaptive neural network control for the trajectory tracking of the furuta pendulum. IEEE Transactions on Cybernetics, 46(12), 3439–3452. https://doi.org/10.1109/TCYB.2015.2509863
  • Moreno–Valenzuela, J., Montoya–Cháirez, J., & Santibáñez, V. (2020). Robust trajectory tracking control of an underactuated control moment gyroscope via neural network–based feedback linearization. Neurocomputing, 403(3), 314–324. https://doi.org/10.1016/j.neucom.2020.04.019
  • Oveisi, A., Jeronimo, M. B., & Nestorovié, T. (2018). Nonlinear observer-based recurrent wavelet neuro-controller in disturbance rejection control of flexible structures. Engineering Applications of Artificial Intelligence, 69(1), 50–64. https://doi.org/10.1016/j.engappai.2017.12.009
  • Reyes, F., & Kelly, R. (1997). Experimental evaluation of identification schemes on a direct drive robot. Robotica, 15(5), 563–571. https://doi.org/10.1017/S0263574797000659
  • Selmic, R. R., & Lewis, F. L. (2000). Backlash compensation in nonlinear systems using dynamic inversion by neural networks. Asian Journal of Control, 2(2), 76–87. https://doi.org/10.1111/asjc.2000.2.issue-2
  • Shtessel, Y. B., Moreno, J. A., Plestan, F., Fridman, L. M., & Poznyak, A. S. (2010). Super-twisting adaptive sliding mode control: A Lyapunov design. In 49th IEEE conference on decision and control (CDC) (pp. 5109–5113). IEEE. https://doi.org/10.1109/CDC.2010.5717908
  • Slotine, J.-J. E., & Li, W. (1987). On the adaptive control of robot manipulators. The International Journal of Robotics Research, 6(3), 49–59. https://doi.org/10.1177/027836498700600303
  • Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199). Prentice Hall.
  • Sun, T., Pei, H., Pan, Y., Zhou, H., & Zhang, C. (2011). Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing, 74(14–15), 2377–2384. https://doi.org/10.1016/j.neucom.2011.03.015
  • Theodoridis, D., Boutalis, Y., & Christodoulou, M. (2009). Direct adaptive control of unknown nonlinear systems using a new neuro-fuzzy method together with a novel approach of parameter hopping. Kybernetika, 45(3), 349–386. http://eudml.org/doc/37671
  • Wang, H., Yang, Y., Fei, J., & Fang, Y. (2019). Adaptive control of micro-electro-mechanical system gyroscope using neural network compensator. Advances in Mechanical Engineering, 11(12), 1–10. https://doi.org/10.1177/1687814019898325
  • Wang, L., Chai, T., & Fang, Z. (2009). Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space. Journal of Control Theory and Applications, 7(2), 112–118. https://doi.org/10.1007/s11768-009-8045-y
  • Wang, X., Li, X., Wu, Q., & Yin, X. (2019). Neural network based adaptive dynamic surface control of nonaffine nonlinear systems with time delay and input hysteresis nonlinearities. Neurocomputing, 333(1), 53–63. https://doi.org/10.1016/j.neucom.2018.12.058
  • White, D., & Sofge, D. (1992). Handbook of intelligent control: Neural, fuzzy, and adaptive approaches, VNR computer library, Van Nostrand Reinhold.
  • Wu, Y., Huang, R., Li, X., & Liu, S. (2019). Adaptive neural network control of uncertain robotic manipulators with external disturbance and time-varying output constraints. Neurocomputing, 323(2), 108–116. https://doi.org/10.1016/j.neucom.2018.09.072
  • Xia, K., & Huo, W. (2016). Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dynamics, 84(3), 1683–1695. https://doi.org/10.1007/s11071-016-2597-4
  • Yang, Z., Peng, J., & Liu, Y. (2019). Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer. Neurocomputing, 331(7–8), 263–280. https://doi.org/10.1016/j.neucom.2018.11.068
  • Yen, V. T., Nan, W. Y., & Van Cuong, P. (2019). Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Computing and Applications, 31(11), 6945–6958. https://doi.org/10.1007/s00521-018-3520-3
  • Yin, Q., Wang, M., Li, X., & Sun, G. (2018). Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. Neurocomputing, 301(7), 1–10. https://doi.org/10.1016/j.neucom.2018.01.047
  • Zavala-Río, A., Mendoza, M., Santibáñez, V., & Reyes, F. (2015). An output-feedback pid-type global regulator for robot manipulators with bounded inputs. IFAC-PapersOnLine, 48(19), 87–93. https://doi.org/10.1016/j.ifacol.2015.12.01511th IFAC Symposium on Robot Control SYROCO 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.