1,288
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficiency-aware nonlinear model-predictive control with real-time iteration scheme for wave energy converters

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1909-1921 | Received 24 Sep 2021, Accepted 09 May 2022, Published online: 26 May 2022

References

  • Andersen, P., Pedersen, T. S., Nielsen, K. M., & Vidal, E. (2015). Model predictive control of a wave energy converter. 2015 IEEE Conference on Control Applications (CCA), Sidney, NSW, Australia, Sept. 21-23. http://doi.org/10.1109/CCA.2015.7320829.
  • Andersson, J. (2013). A General-Purpose Software Framework for Dynamic Optimization (Doctoral dissertation, University of Sheffield) https://lirias.kuleuven.be/retrieve/243411.
  • Bacelli, G., & Coe, R. G. (2021). Comments on control of wave energy converters. IEEE Transactions on Control Systems Technology, 29(1), 478–481. https://doi.org/10.1109/TCST.2020.2965916.
  • Bacelli, G., Genest, R., & Ringwood, J. V. (2015). Nonlinear control of flap-type wave energy converter with a non-ideal power take-off system. Annual Reviews in Control, 40(2), 116–126. https://doi.org/10.1016/j.arcontrol.2015.09.006.
  • Bull, D., Jenne, D. S., Smith, C. S., Copping, A. E., & Copeland, G. (2016). Levelized cost of energy for a backward bent duct buoy. International Journal of Marine Energy, 16(3), 220–234. https://doi.org/10.1016/J.IJOME.2016.07.002.
  • Chang, G., Jones, C. A., Roberts, J. D., & Neary, V. S. (2018). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127(11), 344–354. https://doi.org/10.1016/J.RENENE.2018.04.071.
  • Coe, R. G., Bacelli, G., & Forbush, D. (2021, May). A practical approach to wave energy modeling and control. Renewable and Sustainable Energy Reviews, 142, 110791. 05https://doi.org/10.1016/j.rser.2021.110791.
  • Cordonnier, J., Gorintin, F., De Cagny, A., Clément, A. H., & Babarit, A. (2015). SEAREV: Case study of the development of a wave energy converter. Renewable Energy, 80(10), 40–52. https://doi.org/10.1016/j.renene.2015.01.061.
  • Cretel, J., Lewis, A. W., Lightbody, G., & Thomas, G. P. (2010). An application of model predictive control to a wave energy point absorber. IFAC Proceedings Volumes, 43(1), 267–272. https://doi.org/10.3182/20100329-3-PT-3006.00049.
  • Diehl, M., Bock, H. G., & Schlöder, J. P. (2005). A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization, 43(5), 1714–1736. https://doi.org/10.1137/S0363012902400713.
  • Falcão, A. F., & Henriques, J. C. (2015, August). Effect of non-ideal power take-off efficiency on performance of single- and two-body reactively controlled wave energy converters. Journal of Ocean Engineering and Marine Energy, 1(3), 273–286. https://doi.org/10.1007/s40722-015-0023-5.
  • Falnes, J. (2002). Ocean waves and oscillating systems: Linear interactions including wave-energy extraction. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511754630.
  • Ferreau, H. J., Bock, H. G., & Diehl, M. (2008). An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8), 816–830. https://doi.org/10.1002/rnc.1251.
  • Fusco, F., & Ringwood, J. V. (2010). Short-term wave forecasting for real-time control of wave energy converters. IEEE Transactions on Sustainable Energy, 1(2), 99–106. https://doi.org/10.1109/TSTE.2010.2047414.
  • Genest, R., Bonnefoy, F., Clément, A. H., & Babarit, A. (2014). Effect of non-ideal power take-off on the energy absorption of a reactively controlled one degree of freedom wave energy converter. Applied Ocean Research, 48(10), 236–243. https://doi.org/10.1016/j.apor.2014.09.001.
  • González-Villarreal, O. J. (2021). Efficient Real-Time Solutions for Nonlinear Model Predictive Control with Applications. (Doctoral dissertation, University of Sheffield). https://etheses.whiterose.ac.uk/29336/
  • González-Villarreal, O. J., & Rossiter, A. (2020a). Fast hybrid dual mode NMPC for a parallel double inverted pendulum with experimental validation. IET Control Theory and Applications, 14(16), 2329–2338. https://doi.org/10.1049/iet-cta.2020.0130.
  • González-Villarreal, O. J., & Rossiter, A. (2020b). Shifting strategy for efficient block-based non-linear model predictive control using real-time iterations. IET Control Theory and Applications, 14(6), 865–877. https://doi.org/10.1049/iet-cta.2019.0369.
  • Gros, S., Zanon, M., Quirynen, R., Bemporad, A., & Diehl, M. (2016). From linear to nonlinear MPC: bridging the gap via the real-time iteration. International Journal of Control, 93(1), 62–80. https://doi.org/10.1080/00207179.2016.1222553.
  • Guerrero-Fernández, J., & González-Villarreal, O. J. (2021). Code Ocean Capsule for paper: Efficiency-aware non-linear model-predictive control with real-time iteration scheme for wave energy converters https://codeocean.com/capsule/6928248/tree
  • Guerrero-Fernández, J., González-Villarreal, O. J., Rossiter, A., & Jones, B. (2020). Model predictive control for wave energy converters: A moving window blocking approach. IFAC-PapersOnLine, 53(2), 12815–12821. 21st IFAC World Congress.  https://doi.org/10.1016/j.ifacol.2020.12.1960.
  • Li, G., & Belmont, M. R. (2014). Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device. Renewable Energy, 69(09), 453–463. https://doi.org/10.1016/j.renene.2014.03.070
  • Maria-Arenas, A., Garrido, A. J., Rusu, E., & Garrido, I. (2019). Control strategies applied to wave energy converters: State of the art. Energies, 12(16), 1–19. https://doi.org/10.3390/en12163115.
  • Mérigaud, A., & Tona, P. (2020). Spectral control of wave energy converters with non-ideal power take-off systems. Journal of Marine Science and Engineering, 8(11), 1–15 https://doi.org/10.3390/jmse8110851.
  • Neary, V. S., Lawson, M., Previsic, M., Copping, A., Hallett, K. C., Labonte, A., Rieks, J., & Murray, D. (2014). Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. In Marine Energy Technology Symposium. Sandia National Laboratories.Technical Report
  • Nguyen, H. N. N., Sabiron, G., Tona, P., Kramer, M. M., & Vidal Sanchez, E. (2016, June). Experimental validation of a nonlinear mpc strategy for a wave energy converter prototype. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE (Vol. 6, pp. 1–10). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/OMAE2016-54455.
  • Nocedal, J., & Wright, Stephen J. ( 2006). Numerical optimization (2nd ed.). Springer Series in Operations Research and Financial Engineering. Springer New York, NY. https://doi.org/10.1007/978-0-387-40065-5.
  • Quirynen, R., Vukov, M., & Diehl, M. (2015). Multiple shooting in a microsecond. In Thomas Carraro, Michael Geiger, Rolf Rannacher, & Stefan Körkel (Eds.), Multiple shooting and time domain decomposition methods (pp. 183–201). Springer Cham. https://doi.org/10.1007/978-3-319-23321-5_7.
  • Ringwood, J. V., Bacelli, G., & Fusco, F. (2014). Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation. IEEE Control Systems Magazine, 34(5), 30–55. https://doi.org/10.1109/MCS.2014.2333253.
  • Ringwood, J. V., Ferri, F., Ruehl, K. M., Yu, Y. H., Coe, R. G., Bacelli, G., Weber, J., & Kramer, M. M. (2017). A competition for WEC control systems. Proceedings of the 12th European Wave and Tidal Energy Conference, Irland, 27th Aug-1st Sept.
  • Rossiter, J. A. (2018). A first course in predictive control (2nd ed.). Boca Raton: CRC Press. ISBN 9781032339160.
  • Sanchez, E. V., Hansen, R. H., & Kramer, M. M. (2015). Control performance assessment and design of optimal control to harvest ocean energy. IEEE Journal of Oceanic Engineering, 40(1), 15–26. https://doi.org/10.1109/JOE.2013.2294386.
  • Strager, T., Martin dit Neuville, A., Fernández López, P., Giorgio, G., Mureşan, T., & Andersen, P. (2014, June). Optimising Reactive Control in Non-Ideal Efficiency Wave Energy Converters. International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, California, USA, June 8-13. https://doi.org/10.1115/OMAE2014-23005.
  • Tedeschi, E., Carraro, M., Molinas, M., & Mattavelli, P. (2011). Effect of control strategies and power take-off efficiency on the power capture from sea waves. IEEE Transactions on Energy Conversion, 26(4), 1088–1098. http://doi.org/10.1109/TEC.2011.2164798.
  • Tom, N., Ruehl, K., & Ferri, F. (2018). Numerical Model Development and Validation for the WECCCOMP Control Competition. ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, June 17-22. https://doi.org/10.1115/OMAE2018-78094.
  • Tom, N. M., Madhi, F., & Yeung, R. W. (2019). Power-to-load balancing for heaving asymmetric wave-energy converters with nonideal power take-off. Renewable Energy, 131(1), 1208–1225. https://doi.org/10.1016/j.renene.2017.11.065.
  • Tona, P., Nguyen, H. N., Sabiron, G., & Creff, Y. (2015). An efficiency-aware model predictive control strategy for a heaving buoy wave energy converter. 11th European wave and tidal energy conference-EWTEC 2015, Nantes, France, September 6-11. http://www.ewtec.org/conferences/ewtec-2015/.
  • Tona, P., Sabiron, G., & Nguyen, H. N. (2019). An Energy-Maximising MPC Solution to the WEC Control Competition. ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, June 9-14. https://doi.org/10.1115/OMAE2019-95197.
  • Tona, P., Sabiron, G., Nguyen, H. N., Mérigaud, A., & Ngo, C. (2020, August). Experimental Assessment of the IFPEN Solution to the WEC Control Competition. ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, Online, August 3-7. https://doi.org/10.1115/OMAE2020-18669.
  • Wang, L., Isberg, J., & Tedeschi, E. (2018). Review of control strategies for wave energy conversion systems and their validation: The wave-to-wire approach. Renewable and Sustainable Energy Reviews, 81(11), 366–379. https://doi.org/10.1016/j.rser.2017.06.074.