255
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of a class of precision motion systems with uncertain hysteretic nonlinearities

, , , , , & show all
Pages 1971-1988 | Received 28 Mar 2021, Accepted 15 May 2022, Published online: 02 Jun 2022

References

  • Al Janaideh, M. (2013). About the output of the inverse compensation of the Prandtl-Ishlinskii model. In American control conference (pp. 247–252). IEEE.
  • Al Janaideh, M., Al Saaideh, M., & Rakotondrabe, M. (2020). On hysteresis modeling of a piezoelectric precise positioning system under variable temperature. Mechanical Systems and Signal Processing, 145(1), 1–20.
  • Al Janaideh, M., & Aljanaideh, O. (2018). Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. Mechanical Systems and Signal Processing, 104(1), 835–850. https://doi.org/10.1016/j.ymssp.2017.09.004
  • Al Janaideh, M., Boudaoud, M., Al Saaideh, M., Liang, S., & Régnier, S. (2019). Inverse hysteresis control of stick-slip sem integrated nano-robotic systems. In Conference on decision and control (pp. 6851–6856). IEEE.
  • Al Janaideh, M., & Krejčí, P. (2012). Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics, 18(5), 1498–1507. https://doi.org/10.1109/TMECH.2012.2205265
  • Al Janaideh, M., Rakheja, S., & Su, C.-Y. (2011). An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics, 16(4), 734–744. https://doi.org/10.1109/TMECH.2010.2052366
  • Al Janaideh, M., & Rakotondrabe, M. (2021). Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dynamics, 104(1), 3385–3405. https://doi.org/10.1007/s11071-021-06460-w
  • Al Janaideh, M., Rakotondrabe, M., Al-Darabsah, I., & Aljanaideh, O. (2018). Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Engineering Practice, 72(2), 29–41. https://doi.org/10.1016/j.conengprac.2017.11.001
  • Aljanaideh, K. F., Al Janaideh, M., Rakotondrabe, M., & Kundur, D. (2018). Identification of piezomicropositioning Hammerstein systems with generalized Prandtl-Ishlinskii hysteresis nonlinearities. In Conference on decision and control (pp. 6585–6590). IEEE.
  • Aljanaideh, K. F., Al Janaideh, M., Rakotondrabe, M., & Kundur, D. (2019). Identification of Hammerstein systems with rate-dependent hysteresis nonlinearities in a class of smart material-based actuators. In American control conference (pp. 2495–2500). IEEE.
  • Aljanaideh, K. F., & Bernstein, D. S. (2017). Closed-loop identification of unstable systems using noncausal FIR models. International Journal of Control, 90(2), 168–185. https://doi.org/10.1080/00207179.2016.1172733
  • Aljanaideh, K. F., & Bernstein, D. S. (2018). System identification using composite FIR/IIR models. In American control conference (pp. 5639–5644). IEEE.
  • Aljanaideh, K. F., & Diversi, R. (2019). Errors-in-variables identification of composite noncausal-FIR/IIR models with application to transmissibility identification. In Conference on decision and control (pp. 2690–2695). IEEE.
  • Aljanaideh, K. F., Rakotondrabe, M., Al Janaideh, M., & Kundur, D. (2018). Identification of precision motion systems with Prandtl-Ishlinskii hysteresis nonlinearities. In 2018 American control conference (pp. 5225–5230). IEEE.
  • Aljanaideh, O., Al Janaideh, M., & Rakotondrabe, M. (2015). Inversion-free feedforward dynamic compensation of hysteresis nonlinearities in piezoelectric Micro/Nano-positioning actuators. In International conference on robotics and automation (pp. 2673–2678).
  • Aljanaideh, O., Muneaki, M., & Blake, H. (2017). Integrated asymmetric stop operator based model for strain stress hysteresis characteristics of cable driven robots loaded longitudinally. In American control conference (pp. 2543–2548).
  • Ansari, A., & Bernstein, D. S. (2018). Input estimation for nonminimum-phase systems with application to acceleration estimation for a maneuvering vehicle. IEEE Transactions on Control Systems Technology, 27(4), 1596–1607. https://doi.org/10.1109/TCST.87
  • Bai, E. W. (2002). Identification of linear systems with hard input nonlinearities of known structure. Automatica, 38(5), 853–860. https://doi.org/10.1016/S0005-1098(01)00281-3
  • Bai, X., Cai, F., & Chen, P. (2019). Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers. Mechanical Systems and Signal Processing, 117(1), 157–169. https://doi.org/10.1016/j.ymssp.2018.07.050
  • Beijen, A., Heertjes, M., Butler, H., & Steinbuch, M. (2018). Disturbance feedforward control for active vibration isolation systems with internal isolator dynamics. Journal of Sound and Vibration, 436(1), 220–235. https://doi.org/10.1016/j.jsv.2018.09.010
  • Benounsaad, M., Habbadi, A., Al Janaideh, M., & Rakotondrabe, M. (2020). Feedforward and state-feedback force-position control of a robotic platform devoted to precise co-manipulation. In International conference on manipulation, automation and robotics at small scales (pp. 1–63).
  • Butcher, M., Giustiniani, A., & Masi, A. (2016). On the identification of Hammerstein systems in the presence of an input hysteretic nonlinearity with nonlocal memory: Piezoelectric actuators – an experimental case study. Physica B, 486(1), 101–105. https://doi.org/10.1016/j.physb.2015.10.023
  • Cao, Q., Tan, Y., Dong, R., & Shen, W. (2018). A modeling method of electromagnetic micromirror in random noisy environment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2578–2587. https://doi.org/10.1109/TSMC.6221021
  • Cavallo, A., Davino, D., Maria, G. D., Natale, C., Pirozzi, S., & Visone, C. (2008). Hysteresis compensation of smart actuators under variable stress conditions. Physica B: Condensed Matter, 403(2–3), 261–265. https://doi.org/10.1016/j.physb.2007.08.024
  • Chen, X., & Hisayama, T. (2008). Adaptive sliding-mode position control for piezo-actuated stage. IEEE Transactions on Industrial Electronics, 55(11), 3927–3934. https://doi.org/10.1109/TIE.2008.926768
  • Davino, D., Natale, C., Pirozzi, S., & Visone, C. (2004). Phenomenological dynamic model of a magnetostrictive actuator. Physica B: Condensed Matter, 343(1-4), 112–116. https://doi.org/10.1016/j.physb.2003.08.080
  • Devasia, S., Eleftheriou, E., & Moheimani, R. (2007). A survey of control issues in nanopositioning. IEEE Transactions on Control Systems Technology, 15(5), 802–823. https://doi.org/10.1109/TCST.2007.903345
  • Ding, B., & Li, Y. (2018). Hysteresis compensation and sliding mode control with perturbation estimation for piezoelectric actuators. Micromachines, 9(5), 1–13. https://doi.org/10.3390/mi9050241
  • Ding, F., & Chen, T. (2005). Identification of Hammerstein nonlinear armax systems. Automatica, 41(9), 1479–1489. https://doi.org/10.1016/j.automatica.2005.03.026
  • Ding, F., Liu, X. P., & Liu, G. (2011). Identification methods for Hammerstein nonlinear systems. Digital Signal Processing, 21(2), 215–238. https://doi.org/10.1016/j.dsp.2010.06.006
  • Dong, R., Tan, Y., & Xie, Y. (2016). Identification of micropositioning stage with piezoelectric actuators. Mechanical Systems and Signal Processing, 75(5), 618–630. https://doi.org/10.1016/j.ymssp.2015.12.032
  • Dong, R., Tan, Y., Xie, Y., & Janschek, K. (2016). Recursive identification of micropositioning stage based on sandwich model with hysteresis. IEEE Transactions on Control Systems Technology, 25(1), 317–325. https://doi.org/10.1109/TCST.2016.2542004
  • Edardar, M., Tan, X., & Khalil, H. K. (2014). Design and analysis of sliding mode controller under approximate hysteresis compensation. IEEE Transactions on Control Systems Technology, 23(2), 598–608. https://doi.org/10.1109/TCST.2014.2329187
  • Fan, Y., & Tan, U. (2017). Adaptive rate-dependent feedforward control for piezoelectric actuator. In IEEE conference on automation science and engineering (pp. 592–597).
  • Fang, L., Wang, J., & Tan, X. (2018). An incremental harmonic balance-based approach for harmonic analysis of closed-loop systems with Prandtl-Ishlinskii operator. Automatica, 88(1), 48–56. https://doi.org/10.1016/j.automatica.2017.11.005
  • Fang, L., Wang, J., & Zhang, Q. (2015). Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by preisach model. Nonlinear Dynamics, 79(2), 1257–1273. https://doi.org/10.1007/s11071-014-1740-3
  • Fleming, A., & Leang, K. K. (2014). Design, modeling and control of nanopositioning systems. Springer.
  • Gao, X., Ren, X., Zhu, C., & Zhang, C. (2015). Identification and control for Hammerstein systems with hysteresis non-linearity. IET Control Theory and Applications, 9(13), 1935–1947. https://doi.org/10.1049/cth2.v9.13
  • Giri, F., Rochdi, Y., Chaoui, F., & Brouri, A. (2008). Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities. Automatica, 44(3), 767–775. https://doi.org/10.1016/j.automatica.2007.07.005
  • He, W., & Meng, T. (2017). Adaptive control of a flexible string system with input hysteresis. IEEE Transactions on Control Systems Technology, 26(2), 693–700. https://doi.org/10.1109/TCST.2017.2669158
  • Ho, B., & Kálmán, R. E. (1966). Effective construction of linear state-variable models from input/output functions. Automatisierungstechnik, 14(1–12), 545–548. https://doi.org/10.1524/auto.1966.14.112.545
  • Holzel, M. S., Ali, A. A., & Bernstein, D. S. (2010). Input richness and zero buffering in time-domain identification. In American control conference (pp. 2929–2934). IEEE.
  • Juang, J. N. (1994). Applied system identification. Prentice Hall.
  • Liu, Y., & Bai, E.-W. (2007). Iterative identification of Hammerstein systems. Automatica, 43(2), 346–354. https://doi.org/10.1016/j.automatica.2006.09.004
  • Loon, S., Gruntjens, K., Heertjes, M., Wouw, N., & Heemels, W. (2017). Frequency-domain tools for stability analysis of reset control systems. Automatica, 82(11), 101–108. https://doi.org/10.1016/j.automatica.2017.04.008
  • Moheimani, R. (2008). Invited review article: Accurate and fast nanopositioning with piezoelectrictube scanners: Emerging trends and future challenges. Review of Scientific Instrument, 79(7), 1–11. https://doi.org/10.1063/1.2957649
  • Nadawi, Y., Tan, X., & Khalil, H. (2017). An adaptive conditional servocompensator design for nanopositioning control. In Conference on decision and control (pp. 885–890). IEEE.
  • Ninness, B., & Gibson, S. (2002). Quantifying the accuracy of Hammerstein model estimation. Automatica, 38(12), 2037–2051. https://doi.org/10.1016/S0005-1098(02)00101-2
  • Oubellil, R., Ryba, Ł., Voda, A., & Rakotondrabe, M. (2015). Experimental model inverse-based hysteresis compensation on a piezoelectric actuator. In International conference on system theory, control and computing (pp. 186–191).
  • Pogulyaev, Y., Baitimerov, R., & Rozhdestvensky, Y. (2015). Detailed dynamic modeling of common rail piezo injector. Procedia Engineering, 129(1), 93–98. https://doi.org/10.1016/j.proeng.2015.12.014
  • Pouliquen, M., Pigeon, E., & Gehan, O. (2016). Identification scheme for Hammerstein output error models with bounded noise. IEEE Transactions on Automatic Control, 61(2), 550–555. https://doi.org/10.1109/TAC.2015.2444151
  • Rakotondrabe, M. (2012). Modeling and compensation of multivariable creep in multi-dof piezoelectric actuators. In International conference on robotics and automation (pp. 4577–4581).
  • Rakotondrabe, M., Al Janaideh, M., Bienaim, A., & Xu, Q. (2013). Smart materials-based actuators at the Micro/Nano-scale: Characterization, control and applications. Springer-Verlag.
  • Rakotondrabe, M., Haddab, Y., & Lutz, P. (2009). Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Transactions on Control Systems Technology, 17(3), 528–539. https://doi.org/10.1109/TCST.2008.2001151
  • Schoukens, J., Nemeth, J., Crama, P., Rolain, Y., & Pintelon, R. (2003). Fast approximate identification of nonlinear systems. Automatica, 39(7), 1267–1274. https://doi.org/10.1016/S0005-1098(03)00083-9
  • Shahidi, D., & Trumper, D. (2018). Design and control of a piezoelectric driven reticle assist device for prevention of reticle slip in lithography systems. Mechatronics, 24(6), 562–571. https://doi.org/10.1016/j.mechatronics.2014.03.001
  • Shakiba, S., Ayati, M., & Yousefi-Koma, A. (2021). Development of hybrid Prandtl–Ishlinskii and constitutive models for hysteresis of Shape-Memory-Alloy-driven actuators. Robotica, 39(8), 1390–1404. https://doi.org/10.1017/S026357472000123X
  • Shan, Y., & Leang, K. (2013). Design and control for high-speed nanopositioning: serial-kinematic nanopositioners and repetitive control for nanofabrication. IEEE Control Systems Magazine, 33(6), 86–105. https://doi.org/10.1109/MCS.2013.2279474
  • Stefanski, F., Minorowicz, B., Persson, J., Plummer, A., & Bowen, C. (2017). Non-linear control of a hydraulic piezo-valve using a generalized Prandtl–Ishlinskii hysteresis model. Mechanical Systems and Signal Processing, 82(1), 412–431. https://doi.org/10.1016/j.ymssp.2016.05.032
  • Tan, X., & Baras, J. S. (2004). Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 40(9), 1469–1480. https://doi.org/10.1016/j.automatica.2004.04.006
  • Vahid, H., Tegoeh, T., & NhoDo, T. (2014). A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing, 49(1–2), 209–233. https://doi.org/10.1016/j.ymssp.2014.04.012
  • Van Pelt, T. H., & Bernstein, D. S. (2001). Non-linear system identification using Hammerstein and non-linear feedback models with piecewise linear static maps. International Journal of Control, 74(18), 1807–1823. https://doi.org/10.1080/00207170110089798
  • Vörös, J. (2017). Recursive identification of discrete-time nonlinear cascade systems with time-varying output hysteresis. Nonlinear Dynamics, 87(2), 1427–1434. https://doi.org/10.1007/s11071-016-3124-3
  • Wang, D. W., Yanyun, C., Yanga, G., & Ding, F. (2010). Auxiliary model based recursive generalized least squares parameter estimation for hammerstein oear systems. Mathematical and Computer Modelling, 52(1–2), 309–317. https://doi.org/10.1016/j.mcm.2010.03.002
  • Xie, Y., Tan, Y., & Dong, R. (2012). Nonlinear modeling and decoupling control of xy micropositioning stages with piezoelectric actuators. IEEE/ASME Transactions on Mechatronics, 18(3), 821–832. https://doi.org/10.1109/TMECH.2012.2187794
  • Xu, Y., Li, X., Yang, X., Yang, Z., & Chen, Q. (2020). A two-stage model for rate-dependent inverse hysteresis in reluctance actuators. Mechanical Systems and Signal Processing, 135(1), 1–18. https://doi.org/10.1016/j.ymssp.2019.106427
  • Yi, S., Yang, B., & Meng, G. (2019). Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation. Mechanical Systems and Signal Processing, 114(1), 644–657. https://doi.org/10.1016/j.ymssp.2018.05.013
  • Zhang, J., Simeonov, A., & Yip, M. (2018). Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles. Smart Materials and Structures, 27(3), 1–17. https://doi.org/10.1088/1361-665X/aaa690
  • Zhang, Y., Liu, H., Ma, T., Hao, L., & Li, Z. (2021). A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads. Mechanical Systems and Signal Processing, 148, 1–19. https://doi.org/10.1016/j.ymssp.2020.107133
  • Zhoa, Y., He, W., Kaynak, O., Yang, C., Cheng, L., & Wang, Y. (2019). Uncertainty and disturbance estimator-based control of a flapping wing aerial vehicle with unknown backlash-like hysteresis. IEEE Transactions on Industrial Informatics, 67(6), 4826–4835. https://doi.org/10.1109/TIE.2019.2926055
  • Zhu, F. (2012). State estimation and unknown input reconstruction via both reduced-order and high-order sliding mode observers. Journal of Process Control, 22(1), 296–302. https://doi.org/10.1016/j.jprocont.2011.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.