175
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid neural network controller for uncertain nonlinear discrete-time systems with non-symmetric dead zone and unknown disturbances

, ORCID Icon, & ORCID Icon
Pages 2003-2011 | Received 10 Aug 2021, Accepted 16 May 2022, Published online: 31 May 2022

References

  • Andoga, R., Fözö, L., Kovács, R., Beneda, K., Moravec, T., & Schreiner, M. (2019). Robust control of small turbojet engines. Machines, 7(1), 3. https://doi.org/10.3390/machines7010003
  • Arellano-Garcia, H., Barz, T., Dorneanu, B., & Vassiliadis, V. S. (2020). Real-time feasibility of nonlinear model predictive control for semi-batch reactors subject to uncertainty and disturbances. Computers & Chemical Engineering, 133(4), Article 106529. https://doi.org/10.1016/j.compchemeng.2019.106529
  • Aslam, M. S., & Dai, X. (2020). H ∞ control for network ts fuzzy systems under time varying delay for multi-area power systems. International Journal of Control, Automation and Systems, 18(11), 2774–2787. https://doi.org/10.1007/s12555-019-0844-4
  • Ba, K.-X., Ma, G.-L., Yu, B., Jin, Z.-G., Huang, Z.-P., Zhang, J.-X., & Kong, X.-D. (2020). A nonlinear model-based variable impedance parameters control for position-based impedance control system of hydraulic drive unit. International Journal of Control, Automation and Systems, 18(7), 1806–1817. https://doi.org/10.1007/s12555-019-0151-0
  • Badillo-Hernandez, U., Alvarez, J., & Alvarez-Icaza, L. (2019). Efficient modeling of the nonlinear dynamics of tubular heterogeneous reactors. Computers & Chemical Engineering, 123(1), 389–406. https://doi.org/10.1016/j.compchemeng.2019.01.018
  • Cao, Y.-Y., & Frank, P. (2001). Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models. Fuzzy Sets and Systems, 124(2), 213–229. https://doi.org/10.1016/S0165-0114(00)00120-2
  • Cao, Y.-Y., & Frank, P. M. (2000). Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2), 200–211. https://doi.org/10.1109/91.842153
  • Chembo, Y. K., Larger, L., & Colet, P. (2008). Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators. IEEE Journal of Quantum Electronics, 44(9), 858–866. https://doi.org/10.1109/JQE.2008.925121
  • Chen, Z., Wang, J., Ma, K., Zhu, P., He, B., & Zhang, C. (2021). Novel fuzzy event-triggered adaptive control for nonlinear systems with input hysteresis. Soft Computing, 25, 6619–6631. https://doi.org/10.1007/s00500-021-05656-x
  • Coulson, J. (2000). Coulson & richardson chemical engineering, volume 1. disp, 10, 32.
  • Demenko, A., Doležel, I., Hameyer, K., Pietrowski, W., Zawirski, K., Zagirnyak, M., Maliakova, M., & Kalinov, A. (2015). Analysis of electric circuits with semiconductor converters with the use of a small parameter method in frequency domain. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. https://doi.org/10.1108/COMPEL-10-2014-0260
  • Deolia, V. K., Purwar, S., & Sharma, T. (2012). Control of discrete-time nonlinear systems using backstepping technique in the presence of saturation and dead-zone constraints. In 2012 Fourth International Conference on Computational Intelligence and Communication Networks (pp. 594–599). IEEE.
  • Dong, Z. (2010). Nonlinear state-feedback dissipation power level control for nuclear reactors. IEEE Transactions on Nuclear Science, 58(1), 241–257. https://doi.org/10.1109/TNS.2010.2091970
  • Fei, J., & Wang, T. (2019). Adaptive fuzzy-neural-network based on RBFNN control for active power filter. International Journal of Machine Learning and Cybernetics, 10(5), 1139–1150. https://doi.org/10.1007/s13042-018-0792-y
  • García-Sandoval, J. P., González-Álvarez, V., Castillo-Toledo, B., & Pelayo-Ortiz, C. (2008). Robust discrete control of nonlinear processes: Application to chemical reactors. Computers & Chemical Engineering, 32(12), 3246–3253. https://doi.org/10.1016/j.compchemeng.2008.05.013
  • Ge, S. S., Hong, F., & Lee, T. H. (2003). Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Transactions on Automatic Control, 48(11), 2004–2010. https://doi.org/10.1109/TAC.2003.819287
  • Ge, S. S., Hong, F., & Lee, T. H. (2004). Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 499–516. https://doi.org/10.1109/TSMCB.2003.817055
  • Ge, S. S., Yang, C., & Lee, T. H. (2008). Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Transactions on Neural Networks, 19(9), 1599–1614. https://doi.org/10.1109/TNN.2008.2000446
  • Han, D. (2018). A study on application of fuzzy adaptive unscented Kalman filter to nonlinear turbojet engine control. International Journal of Aeronautical and Space Sciences, 19(2), 399–410. https://doi.org/10.1007/s42405-018-0032-4
  • Ho, D. W. C., Li, J., & Niu, Y. (2005). Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Transactions on Neural Networks, 16(3), 625–635. https://doi.org/10.1109/TNN.2005.844907
  • Hoeye, S., Ramirez, F., & Suarez, A. (2004). Nonlinear optimization tools for the design of high-efficiency microwave oscillators. IEEE Microwave and Wireless Components Letters, 14(5), 189–191. https://doi.org/10.1109/LMWC.2004.827869
  • Ibrir, S., Xie*, W. F., & Su, C.-Y. (2005). Observer-based control of discrete-time Lipschitzian non-linear systems: Application to one-link flexible joint robot. International Journal of Control, 78(6), 385–395. https://doi.org/10.1080/00207170500101706
  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE.
  • Li, D.-J., & Tang, L. (2014). Adaptive control for a class of chemical reactor systems in discrete-time form. Neural Computing and Applications, 24(7), 1807–1814. https://doi.org/10.1007/s00521-013-1420-0
  • Li, R.-B., Wang, X.-M., Liu, X.-M., Niu, B., & Yang, D. (2020). Adaptive neural tracking control for uncertain switched nonlinear non-lower triangular system with disturbances and dead-zone input. International Journal of Control, Automation and Systems, 18(6), 1445–1452. https://doi.org/10.1007/s12555-019-0330-z
  • Liu, Y.-J., Gao, Y., Tong, S., & Li, Y. (2015). Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Transactions on Fuzzy Systems, 24(1), 16–28. https://doi.org/10.1109/TFUZZ.2015.2418000
  • Liu, Y., Liu, L., & Tong, S. (2014). Adaptive neural network tracking design for a class of uncertain nonlinear discrete-time systems with dead-zone. Science China Information Sciences, 57(3), 1–12. https://doi.org/10.1007/s11432-012-4779-0
  • Liu, Y.-J., & Tong, S. (2014). Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input. IEEE Transactions on Cybernetics, 45(3), 497–505. https://doi.org/10.1109/TCYB.2014.2329495
  • Lv, W., Wang, F., & Zhang, L. (2018). Adaptive fuzzy finite-time control for uncertain nonlinear systems with dead-zone input. International Journal of Control, Automation and Systems, 16(5), 2549–2558. https://doi.org/10.1007/s12555-018-0118-6
  • Mielczarski, W. (1988). Very fast linear and non-linear observers part 2. Application to a power system. International Journal of Control, 48(5), 1833–1842. https://doi.org/10.1080/00207178808906290
  • Panghal, S., & Kumar, M. (2021). Neural network method: Delay and system of delay differential equations. Engineering with Computers, 1–10. https://doi.org/10.1007/s00366-021-01373-z
  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57. https://doi.org/10.1007/s11721-007-0002-0
  • Singh, U. P., & Jain, S. (2018). Optimization of neural network for nonlinear discrete time system using modified quaternion firefly algorithm: Case study of indian currency exchange rate prediction. Soft Computing, 22(8), 2667–2681. https://doi.org/10.1007/s00500-017-2522-x
  • Sirouspour, M. R., & Salcudean, S. E. (2001). Nonlinear control of hydraulic robots. IEEE Transactions on Robotics and Automation, 17(2), 173–182. https://doi.org/10.1109/70.928562
  • Tajbl, D., Simons, J., & Carberry, J. (1966). Heterogeneous catalysis in continuous stirred tank reactor. Industrial & Engineering Chemistry Fundamentals, 5(2), 171–175. https://doi.org/10.1021/i160018a003
  • Tao, G., & Kokotović, P. V. (1995). Discrete-time adaptive control of plants with unknown output dead-zones. Automatica, 31(2), 287–291. https://doi.org/10.1016/0005-1098(94)00087-Y
  • Taylor, D. G. (1994). Nonlinear control of electric machines: An overview. IEEE Control Systems Magazine, 14(6), 41–51. https://doi.org/10.1109/37.334414
  • Vahdati, H., & Abdipour, A. (2008). Nonlinear stability analysis of microwave oscillators using the periodic averaging method. Progress In Electromagnetics Research, 79, 179–193. https://doi.org/10.2528/PIER07100101
  • Wahi, P., & Kumawat, V. (2011). Nonlinear stability analysis of a reduced order model of nuclear reactors: A parametric study relevant to the advanced heavy water reactor. Nuclear Engineering and Design, 241(1), 134–143. https://doi.org/10.1016/j.nucengdes.2010.11.006
  • Wang, H., Chen, B., Lin, C., & Sun, Y. (2021). Neural-network-based decentralized output-feedback control for nonlinear large-scale delayed systems with unknown dead-zones and virtual control coefficients. Neurocomputing, 424(12), 255–267. https://doi.org/10.1016/j.neucom.2020.02.086
  • Wang, M., Shi, H., Wang, C., & Fu, J. (2021). Dynamic learning from adaptive neural control for discrete-time strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 1–13. https://doi.org/10.1109/TNNLS.2021.3054378
  • Yang, X.-S., & Papa, J. (2016). Bio-inspired computation and its applications in image processing: An overview. Bio-inspired Computation and Applications in Image Processing, 1–24. https://doi.org/10.1016/B978-0-12-804536-7.00001-6
  • Yu, H., Feng, Z.-j., & Wang, X.-y. (2004). Nonlinear control for a class of hydraulic servo system. Journal of Zhejiang University-Science A, 5(11), 1413–1417. https://doi.org/10.1631/jzus.2004.1413
  • Zhong, H., Li, X., Gao, L., & Dong, H. (2021). Development of admittance control method with parameter self-optimization for hydraulic series elastic actuator. International Journal of Control, Automation and Systems, 19, 2357–2372. https://doi.org/10.1007/s12555-020-0465-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.