200
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Modelling of piezoelectric actuating systems subjected to variable loads and frequencies and applications to prescribed performance control

ORCID Icon, &
Pages 2356-2373 | Received 25 Feb 2021, Accepted 14 Jun 2022, Published online: 05 Jul 2022

References

  • Bechlioulis, C. P., & Rovithakis, G. A. (2008). Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 53(9), 2090–2099. https://doi.org/10.1109/TAC.2008.929402
  • Bechlioulis, C. P., & Rovithakis, G. A. (2011). Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. IEEE Transactions on Automatic Control, 56(9), 2224–2230. https://doi.org/10.1109/TAC.2011.2157399
  • Cao, J., Ling, M., Inman, D. J., & Lin, J. (2016). Generalized constitutive equations for piezo-actuated compliant mechanism. Smart Materials and Structures, 25(9), Article 95005. https://doi.org/10.1088/0964-1726/25/9/095005
  • Chen, L., Feng, Y., Li, R., Chen, X., & Jiang, H. (2019). Jiles-Atherton based hysteresis identification of shape memory alloy-actuating compliant mechanism via modified particle swarm optimization algorithm. Complexity, 2019, Article 7465461. https://doi.org/10.1155/2019/7465461
  • Chen, X. (2018). Discrete-time adaptive control design for ionic polymer-metal composite actuators. IEEE Access, 6, 28114–28121. https://doi.org/10.1109/ACCESS.2018.2841514
  • Chen, X., Feng, Y., & Su, C.-Y. (2016). Adaptive control for continuous-time systems with actuator and sensor hysteresis. Automatica, 64(64), 196–207. https://doi.org/10.1016/j.automatica.2015.11.009
  • Chen, X., Su, C., Li, Z., & Yang, F. (2016). Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator. IEEE Transactions on Industrial Electronics, 63(10), 6471–6481. https://doi.org/10.1109/TIE.2016.2573270
  • Feng, Y., Li, Z., Rakheja, S., & Jiang, H. (2018). A modified Prandtl–Ishlinskii hysteresis modeling method with load-dependent delay for characterizing magnetostrictive actuated systems. Mechanical Sciences, 9(1), 177–188. https://doi.org/10.5194/ms-9-177-2018
  • Hua, C., Zhang, L., & Guan, X. (2014). Output feedback control for interconnected time-delay systems with prescribed performance. Neurocomputing, 129, 208–215. https://doi.org/10.1016/j.neucom.2013.09.039
  • Janaideh, M., Rakheja, S., & Su, C.-Y. (2011). An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME on Mechatronics, 16(4), 734–744. https://doi.org/10.1109/TMECH.2010.2052366
  • Janaideh, O., Rakotondrabe, M., Khasawneh, H., & Al Janaideh, M. (2016). Rate-dependent Prandtl-Ishlinskii hysteresis compensation using inverse-multiplicative feedforward control in magnetostrictive Terfenol-D based actuators. 2016 American Control Conference, July 6, 2016–July 8, 2016.
  • Jin, L., Yan, X., Wang, X., Hu, W., Zhang, Y., & Li, L. (2018). Dynamic model for piezotronic and piezo-phototronic devices under low and high frequency external compressive stresses. Journal of Applied Physics, 123(2), Article 25709. https://doi.org/10.1063/1.5009485
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
  • Lai, G., Wen, C. Y., Liu, Z., Zhang, Y., Chen, C. L. P., & Xie, S. L. (2018). Adaptive inverse compensation for actuator backlash with piecewise time-varying parameters. International Journal of Control, 91(2), 337–345. https://doi.org/10.1080/00207179.2017.1279754
  • Li, J., Tang, H., Wu, Z., Li, H., Zhang, G., Chen, X., & He, Y. (2019). A stable autoregressive moving average hysteresis model in flexure fast tool servo control. IEEE Transactions on Automation Science and Engineering, 16(3), 1484–1493. https://doi.org/10.1109/TASE.8856
  • Li, Z., & Shan, J. (2017). Inverse compensation based synchronization control of the piezo-actuated fabry–perot spectrometer. IEEE Transactions on Industrial Electronics, 64(11), 8588–8597. https://doi.org/10.1109/TIE.2017.2711511
  • Li, Z., Su, C. Y., & Chen, X. (2014). Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator. Control Engineering Practice, 33, 148–160. https://doi.org/10.1016/j.conengprac.2014.09.004
  • Li, Z., Zhao, T., Chen, F., Hu, Y., Su, C., & Fukuda, T. (2018). Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoidlike mobile manipulator. IEEE-ASME Transactions on Mechatronics, 23(1), 121–131. https://doi.org/10.1109/TMECH.2017.2717461
  • Liu, L., Yun, H., Li, Q., Ma, X., Chen, S. L., & Shen, J. (2020). Fractional order based modeling and identification of coupled creep and hysteresis effects in piezoelectric actuators. IEEE-ASME Transactions on Mechatronics, 25(2), 1036–1044. https://doi.org/10.1109/TMECH.3516
  • Liu, Y., Du, D., Qi, N., & Zhao, J. (2019). A distributed parameter Maxwell-Slip model for the hysteresis in piezoelectric actuators. IEEE Transactions on Industrial Electronics, 66(9), 7150–7158. https://doi.org/10.1109/TIE.41
  • Liu, Y., Shan, J., Gabbert, U., & Qi, N. (2013). Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Materials and Structures, 22(11), Article 115020. https://doi.org/10.1088/0964-1726/22/11/115020
  • Malek, S. A., Shahrokhi, M., Vafa, E., & Moradvandi, A. (2018). Adaptive prescribed performance control of switched MIMO uncertain nonlinear systems subject to unmodeled dynamics and input nonlinearities. International Journal of Robust and Nonlinear, 28(18), 5981–5996. https://doi.org/10.1002/rnc.v28.18
  • Namadchian, Z., & Rouhani, M. (2021). Adaptive prescribed performance neural network control for switched stochastic pure-feedback systems with unknown hysteresis. Neurocomputing, 429, 151–165. https://doi.org/10.1016/j.neucom.2020.11.044
  • Oh, J., Drincic, B., & Bernstein, D. S. (2009). Nonlinear feedback models of hysteresis. IEEE Control Systems Magazine, 29(1), 100–119. https://doi.org/10.1109/MCS.2008.930919
  • Ryba, L., Dokoupil, J., Voda, A., & Besancon, G. (2017). Adaptive hysteresis compensation on an experimental nanopositioning platform. International Journal of Control, 90(4), 765–778. https://doi.org/10.1080/00207179.2016.1214874
  • Song, B.-K., Nguyen, P.-B., & Choi, S.-B. (2016). A new hysteresis identification model using a diagonal-weighted Preisach model and recursive approach with application to piezostack actuators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 230(5), 397–409. https://doi.org/10.1177/0959651815624060
  • Srivastava, A., Ward, C., & Patel, R. V. (2017). Adaptive neural Preisach model and model predictive control of shape memory alloy actuators. 2017 IEEE International Conference on Advanced Intelligent Mechatronics, July 3, 2017–July 7, 2017.
  • Sun, Z., Hao, L., Song, B., Yang, R., Cao, R., & Cheng, Y. (2016). Periodic reference tracking control approach for smart material actuators with complex hysteretic characteristics. Smart Materials and Structures, 25(10), Article 105029. https://doi.org/10.1088/0964-1726/25/10/105029
  • Tan, X., & Baras, J. S. (2005). Adaptive identification and control of hysteresis in smart materials. IEEE Transactions on Automatic Control, 50(6), 827–839. https://doi.org/10.1109/TAC.2005.849215
  • Theodorakopoulos, A., & Rovithakis, G. A. (2015). Prescribed performance control of strict-feedback systems with hysteresis input nonlinearity. 2015 European Control Conference, July 15, 2015–July 17, 2015.
  • Wang, G., & Xu, Q. (2017). Design and precision position/force control of a piezo-driven microinjection system. IEEE-ASME Transactions on Mechatronics, 22(4), 1744–1754. https://doi.org/10.1109/TMECH.2017.2698139
  • Yoong, H., Su, C. Y., & Yeo, K. (2021). Stress-dependent generalized Prandtl–Ishlinskii hysteresis model of a NiTi wire with superelastic behavior. Journal of Intelligent Material Systems and Structures, 35(15), 1–12. https://doi.org/10.1177/1045389X20983888.
  • Zhang, X., Chen, X., Zhu, G., & Su, C. (2020). Output feedback adaptive motion control and its experimental verification for time-delay nonlinear systems with asymmetric hysteresis. IEEE Transactions on Industrial Electronics, 67(8), 6824–6834. https://doi.org/10.1109/TIE.41
  • Zhang, X. Y., Lin, Y., & Wang, J. G. (2013). High-gain observer based decentralised output feedback control for interconnected nonlinear systems with unknown hysteresis input. International Journal of Control, 86(6), 1046–1059. https://doi.org/10.1080/00207179.2013.773086

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.