639
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Tracking control of soft dielectric elastomer actuator based on nonlinear PID controller

ORCID Icon, , & ORCID Icon
Pages 130-140 | Received 25 Oct 2021, Accepted 06 Aug 2022, Published online: 22 Aug 2022

References

  • Bai, J., Mao, Z. Z., & Pu, T. Z. (2019). Recursive identification for multi-input–multi-output Hammerstein–Wiener system. International Journal of Control, 92(6), 1457–1469. https://doi.org/10.1080/00207179.2017.1397751
  • Cavanini, L., Ferracuti, F., & Monteriù, A. (2021). Optimal error governor for PID controllers. International Journal of Systems Science, 52(12), 2480–2492. https://doi.org/10.1080/00207721.2021.1890272
  • Crama, P., & Schoukens, J. (2004). Hammerstein–Wiener system estimator initialization. Automatica, 40(9), 1543–1550. https://doi.org/10.1016/j.automatica.2004.03.018
  • Druitt, C. M., & Alici, G. (2014). Intelligent control of electroactive polymer actuators based on fuzzy and neurofuzzy methodologies. IEEE/ASME Transactions on Mechatronics, 19(6), 1951–1962. https://doi.org/10.1109/TMECH.2013.2293774
  • Duan, H. B., Wang, D. B., & Yu, X. F. (2006). Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm. Journal of Bionic Engineering, 3(2), 73–78. https://doi.org/10.1016/S1672-6529(06)60010-3
  • Gao, Z. Q., Huang, Y., & Han, J. Q. (2001). An alternative paradigm for control system design. Proceedings of the 40th IEEE Conference on Decision and Control (Vol. 5, pp. 4578–4585).
  • Gu, G. Y., Gupta, U., Zhu, J., Zhu, L. M., & Zhu, X. Y. (2015). Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model. Applied Physics Letters, 107(4), 042907. https://doi.org/10.1063/1.4927767
  • Gu, G. Y., Zhu, J., Zhu, L. M., & Zhu, X. Y. (2017). A survey on dielectric elastomer actuators for soft robots. Bioinspiration and Biomimetics, 12(1), 011003. https://doi.org/10.1088/1748-3190/12/1/011003
  • Gu, G. Y., Zou, J., Zhao, R. K., Zhao, X. H., & Zhu, X. Y. (2018). Soft wall-climbing robots. Science Robotics, 3(25), eaat2874. https://doi.org/10.1126/scirobotics.aat2874
  • Guo, B. Z., Han, J. Q., & Xi, F. B. (2002). Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. International Journal of Systems Science, 33(5), 351–358. https://doi.org/10.1080/00207720210121771
  • Guo, B. Z., & Zhao, Z. L. (2011). On convergence of tracking differentiator. International Journal of Control, 84(4), 693–701. https://doi.org/10.1080/00207179.2011.569954
  • Han, J. Q. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
  • Hou, Z. S., & Jin, S. T. (2013). Model free adaptive control: Theory and applications model free adaptive control: Theory and applications. CRC Press.
  • Hua, D. Z., Liu, X. H., Sun, S. S., Sotelo, M. A., Li, Z., & Li, W. (2020). A magnetorheological fluid-filled soft crawling robot with magnetic actuation. IEEE/ASME Transactions on Mechatronics, 25(6), 2700–2710. https://doi.org/10.1109/TMECH.3516
  • Huang, P., Wu, J. D., Zhang, P., Wang, Y. W., & Su, C. Y. (2022). Dynamic modeling and tracking control for dielectric elastomer actuator with a model predictive controller. IEEE Transactions on Industrial Electronics, 69(2), 1819–1828. https://doi.org/10.1109/TIE.2021.3063976
  • Huang, P., Ye, W. J., & Wang, Y. W. (2020). Dynamic modeling of dielectric elastomer actuator with conical shape. PLoS ONE, 15(8), e0235229. https://doi.org/10.1371/journal.pone.0235229
  • Ji, X., Liu, X., Cacucciolo, V., Imboden, M., Civet, Y., El Haitami, A., Cantin, S., Perriard, Y., & Shea, H. (2019). An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 4(37), eaaz6451. https://doi.org/10.1126/scirobotics.aaz6451
  • Jiang, F. J., & Gao, Z. Q. (2001). An application of nonlinear PID control to a class of truck ABS problems. Proceedings of the 40th IEEE Conference on Decision and Control (Vol. 1, pp. 516–521).
  • Jing, X. J., Lang, Z. Q., & Billings, S. A. (2007). New bound characteristics of NARX model in the frequency domain. International Journal of Control, 80(1), 140–149. https://doi.org/10.1080/00207170600959995
  • Kellaris, N., Venkata, V. G., Smith, G. M., Mitchell, S. K., & Keplinger, C. (2018). Peano-hasel actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, 3(14), eaar3276. https://doi.org/10.1126/scirobotics.aar3276
  • Li, L., Li, J. N., Qin, L., Cao, J. W., Kankanhalli, M. S., & Zhu, J. (2019). Deep reinforcement learning in soft viscoelastic actuator of dielectric elastomer. IEEE Robotics and Automation Letters, 4(2), 2094–2100. https://doi.org/10.1109/LSP.2016.
  • Li, M. L., Li, Y., & Wang, Q. L. (2021). Second-order adaptive discrete-time fast terminal sliding mode control of a DEAP actuator with hysteresis nonlinearity. International Journal of Systems Science, 52(3), 468–492. https://doi.org/10.1080/00207721.2020.1830197
  • Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T., & Yang, W. (2017). Fast-moving soft electronic fish. Science Advances, 3(4), e1602045. https://doi.org/10.1126/sciadv.1602045
  • Madsen, F. B., Yu, L., Daugaard, A. E., Hvilsted, S., & Skov, A. L. (2015). A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses. RSC Advances, 5(14), 10254–10259. https://doi.org/10.1039/C4RA13511C
  • Mitsis, G. D., Markakis, M. G., & Marmarelis, V. Z. (2009). Nonlinear modeling of the dynamic effects of infused insulin on glucose: Comparison of compartmental with Volterra models. IEEE Transactions on Biomedical Engineering, 56(10), 2347–2358. https://doi.org/10.1109/TBME.10
  • Monkman, G. J. (2000). Advances in shape memory polymer actuation. Mechatronics, 10(4), 489–498. https://doi.org/10.1016/S0957-4158(99)00068-9.
  • Risse, S., Kussmaul, B., Krüger, H., & Kofod, G. (2012). A versatile method for enhancement of electromechanical sensitivity of silicone elastomers. RSC Advances, 2(24), 9029–9035. https://doi.org/10.1039/c2ra21541a
  • Rizzello, G., Naso, D., Turchiano, B., & Seelecke, S. (2016). Robust position control of dielectric elastomer actuators based on LMI optimization. IEEE Transactions on Control Systems Technology, 24(6), 1909–1921. https://doi.org/10.1109/TCST.2016.2519839
  • Shah, D. S., Powers, J. P., Tilton, L. G., Kriegman, S., Bongard, J., & Kramer-Bottiglio, R. (2020). A soft robot that adapts to environments through shape change. Nature Machine Intelligence, 3, 51–59. https://doi.org/10.1038/s42256-020-00263-1
  • Su, Y. X., Duan, B. Y., & Zheng, C. H. (2004). Nonlinear PID control of a six-DOF parallel manipulator. IEE Proceedings—Control Theory and Applications, 151(1), 95–102. https://doi.org/10.1049/ip-cta:20030967
  • Su, Y. X., Duan, B. Y., Zheng, C. H., Zhang, Y. F., Chen, G. D., & Mi, J. W. (2004). Disturbance-rejection high-precision motion control of a stewart platform. IEEE Transactions on Control Systems Technology, 12(3), 364–374. https://doi.org/10.1109/TCST.2004.824315
  • Tang, Y., Chi, Y., Sun, J., Huang, Tzu-Hao, Maghsoudi, O. H., Spence, A., Zhao, J., Su, H., & Yin, J. (2020). Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Science Advances, 6(19), eaaz6912. https://doi.org/10.1126/sciadv.aaz6912
  • Wang, H., Sun, H., Li, C. H., Rahnamayan, S., & Pan, J. S. (2013). Diversity enhanced particle swarm optimization with neighborhood search. Information Sciences, 223, 119–135. https://doi.org/10.1016/j.ins.2012.10.012
  • Wang, J. B., Fei, Y. Q., & Liu, Z. Y. (2019). Locomotion modeling of a triangular closed-chain soft rolling robot. Mechatronics, 57, 150–163. https://doi.org/10.1016/j.mechatronics.2018.12.003
  • Wu, J. D., Ye, W. J., Wang, Y. W., & Su, C. Y. (2021). Modeling of photo-responsive liquid crystal elastomer actuators. Information Sciences, 560, 441–455. https://doi.org/10.1016/j.ins.2021.01.009
  • Xiao, H., Wu, J. D., Ye, W. J., & Wang, Y. W. (2022). Dynamic modeling of dielectric elastomer actuators based on thermodynamic theory. Mechanics of Advanced Materials and Structures, 29(11), 1543–1552. https://doi.org/10.1080/15376494.2020.1829757.
  • Zhang, J. S., & Chen, H. L. (2020). Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dynamics, 100, 2225–2239. https://doi.org/10.1007/s11071-020-05678-4
  • Zhang, X. S., Chi, H., & Zhao, Z. (2021). Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations. Computer Methods in Applied Mechanics and Engineering, 378, 113496. https://doi.org/10.1016/j.cma.2020.113496
  • Zmarzly, D., & Fracz, P. (2016). Nonlinear modeling of streaming electrification measured in swinging cylinder system. IEEE Transactions on Dielectrics and Electrical Insulation, 23(1), 174–182. https://doi.org/10.1109/TDEI.2015.005116
  • Zou, J., & Gu, G. Y. (2019a). Feedforward control of the rate-dependent viscoelastic hysteresis nonlinearity in dielectric elastomer actuators. IEEE Robotics and Automation Letters, 4(3), 2340–2347. https://doi.org/10.1109/LSP.2016.
  • Zou, J., & Gu, G. Y. (2019b). High-precision tracking control of a soft dielectric elastomer actuator with inverse viscoelastic hysteresis compensation. IEEE/ASME Transactions on Mechatronics, 24(1), 36–44. https://doi.org/10.1109/TMECH.3516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.