232
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance and robustness trade-offs in PIR control of uncertain second-order systems with input disturbances

ORCID Icon
Pages 1553-1564 | Received 07 Oct 2022, Accepted 08 May 2023, Published online: 24 May 2023

References

  • Aboudonia, A., Rashad, R., & El-Badawy, A. (2018). Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances. Journal of Intelligent & Robotic Systems, 90(1–2), 201–216. https://doi.org/10.1007/s10846-017-0662-y
  • Åström, K. J., & Hägglund, T. (2006). Advanced PID control (Vol. 461). Research Triangle Park, NC 27709: ISA-The Instrumentation, Systems, and Automation Society.
  • Bartolini, G., Pisano, A., Punta, E., & Usai, E. (2003). A survey of applications of second-order sliding mode control to mechanical systems. International Journal of Control, 76(9-10), 875–892. https://doi.org/10.1080/0020717031000099010
  • Bellman, R., & Cooke, K. L. (1963). Differential-difference equations. Academic Press.
  • Castillo-Zamora, J. J., Boussaada, I., Benarab, A., & Escareno, J. (2022). Time-delay control of quadrotor unmanned aerial vehicles: a multiplicity-induced-dominancy-based approach. Journal of Vibration and Control. https://doi.org/10.1177/10775463221082718.
  • Escobar, G., Martinez, P. R., & Leyva-Ramos, J. (2007). Analog circuits to implement repetitive controllers with feedforward for harmonic compensation. IEEE Transactions Industrial Electronics, 54(1), 567–573. https://doi.org/10.1109/TIE.2006.885515
  • Fan, H., Ramírez, A., Mondié, S., & Sipahi, R. (2022). Proportional-Retarded controller design for single-Integrator dynamics against unintentional delays. IEEE Control Systems Letters, 7, 514–519. https://doi.org/10.1109/LCSYS.2022.3193275
  • Fridman, E. (2014). Introduction to time-delay systems. Birkhäuser.
  • Galván-Guerra, R., Fridman, L., Iriarte, R., Velázquez-Velázquez, J. E., & Steinberger, M. (2018). Integral sliding-mode observation and control for switched uncertain linear time invariant systems: A robustifying strategy. Asian Journal of Control, 20(4), 1551–1565. https://doi.org/10.1002/asjc.v20.4
  • Gomez, M. A., & Ramírez, A. (2022). A scalable approach for consensus stability analysis of a large-scale multi-agent system with single delay. IEEE Transactions on Automatic Control, 1–8. https://doi.org/10.1109/TAC.2022.3203355
  • Hale, J. K., & Lunel, S. M. V. (2013). Introduction to functional differential equations. Vol. 99, Springer.
  • Hernández-Díez, J. E., Méndez-Barrios, C. F., Mondié, S., Niculescu, S. I., & González-Galván, E. J. (2018). Proportional-delayed controllers design for LTI-systems: a geometric approach. International Journal of Control, 91(4), 907–925. https://doi.org/10.1080/00207179.2017.1299943
  • Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge University Press.
  • Kayacan, E. (2019). Sliding mode control for systems with mismatched time-varying uncertainties via a self-learning disturbance observer. Transactions of the Institute of Measurement and Control, 41(7), 2039–2052. https://doi.org/10.1177/0142331218794266
  • Kharitonov, V., Mondié, S., & Collado, J. (2005). Exponential estimates for neutral time-delay systems: an LMI approach. IEEE Transactions on Automatic Control, 50(5), 666–670. https://doi.org/10.1109/TAC.2005.846595
  • Kobaku, T., Jeyasenthil, R., Sahoo, S., Ramchand, R., & Dragicevic, T. (2021). Quantitative feedback design-based robust PID control of voltage mode controlled DC–DC boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 286–290. https://doi.org/10.1109/TCSII.2020.2988319
  • Leyva-Ramos, J., Escobar, G., Martinez, P. R., & Mattavelli, P. (2005). Analog circuits to implement repetitive controllers for tracking and disturbance rejection of periodic signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(8), 466–470. https://doi.org/10.1109/TCSII.2005.848983.
  • Liu, H., & Khalil, H. K. (2019). Output feedback stabilization using super-twisting control and high-gain observer. International Journal of Robust and Nonlinear Control, 29(3), 601–617. https://doi.org/10.1002/rnc.v29.3
  • Mammadov, A. D., Dincel, E., & Söylemez, M. T. (2022). Analytical design of discrete PI–PR controllers via dominant pole assignment. ISA Transactions, 123, 312–322. https://doi.org/10.1016/j.isatra.2021.05.038
  • Miranda-Colorado, R. (2019). Finite-time sliding mode controller for perturbed second-order systems. ISA Transactions, 95, 82–92. https://doi.org/10.1016/j.isatra.2019.05.026
  • Miranda-Colorado, R. (2022). Observer-based saturated proportional derivative control of perturbed second-order systems: Prescribed input and velocity constraints. ISA Transactions, 122, 336–345. https://doi.org/10.1016/j.isatra.2021.05.001
  • Mondié, S., & Kharitonov, V. L. (2005). Exponential estimates for retarded time-delay systems: an LMI approach. IEEE Transactions on Automatic Control, 50(2), 268–273. https://doi.org/10.1109/TAC.2004.841916
  • Moreno-Negrete, E., Méndez-Barrios, C. F., Félix, L., & Ramírez, A. (2022). Some remarks on the design of robust PIR controllers for step-down DC–DC Converters. In 17th IFAC workshop on time-delay systems (pp. 13–18).
  • Oaxaca-Adams, G., & Villafuerte-Segura, R. (2023). On controllers performance for a class of time-delay systems: Maximum decay rate. Automatica, 147, 110669. https://doi.org/10.1016/j.automatica.2022.110669
  • Özer, S. M., & İftar, A. (2021). Eigenvalue-optimization-based stabilization by delayed output feedback. In 29th Mediterranean conference on control and automation (pp. 813-818).
  • Özer, S. M., & İftar, A. (2022). Delay-based stabilization and strong stabilization of LTI systems by nonsmooth constrained optimization. International Journal of Control, 1, 11–9. https://doi.org/10.52547/jocee.1.1.1
  • Pham, V. T., Fortuna, L., & Frasca, M. (2012). Implementation of chaotic circuits with a digital time-delay block. Nonlinear Dynamics, 67(1), 345–355. https://doi.org/10.1007/s11071-011-9982-9
  • Prasanna, U. R., & Rathore, A. K. (2012). Small signal analysis and control design of current-fed full-bridge isolated DC/DC converter with active-clamp. In IEEE international symposium on industrial electronics (pp. 509–514).
  • Ramírez, A. (2022). A robust energy processing method for fuel cell systems supplying a time-varying uncertain load. International Journal of Energy Research, 46(14), 19961–19979. https://doi.org/10.1002/er.v46.14
  • Ramírez, A., Garrido, R., & Mondié, S. (2015). Velocity control of servo systems using an integral retarded algorithm. ISA Transactions, 58, 357–366. https://doi.org/10.1016/j.isatra.2015.04.008
  • Ramírez, A., & Leyva-Ramos, J. (2022). Robust H∞ delay-based control of a fuel-cell system with time-varying norm-bounded uncertainties. In IEEE 61st conference on decision and control (pp. 3649–3654).
  • Ramírez, A., Mondié, S., Garrido, R., & Sipahi, R. (2016). Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. IEEE Transactions on Automatic Control, 61(6), 1688–1693. https://doi.org/10.1109/TAC.9
  • Ramírez, A., & Sipahi, R. (2018a). Multiple intentional delays can facilitate fast consensus and noise reduction in a multiagent system. IEEE Transactions on Cybernetics, 49(4), 1224–1235. https://doi.org/10.1109/TCYB.6221036
  • Ramírez, A., & Sipahi, R. (2018b). Single-delay and multiple-delay proportional-retarded (PR) protocols for fast consensus in a large-scale network. IEEE Transactions Automatic Control, 64(5), 2142–2149. https://doi.org/10.1109/TAC.9
  • Ramírez, A., Sipahi, R., Mondié, S., & Garrido, R. (2017). An analytical approach to tuning of delay-based controllers for LTI-SISO systems. SIAM Journal Control Optimization, 55(1), 397–412. https://doi.org/10.1137/15M1050999
  • Ríos, H., Falcón, R., González, O. A., & Dzul, A. (2018). Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application. IEEE Transactions on Industrial Electronics, 66(2), 1264–1272. https://doi.org/10.1109/TIE.2018.2831191
  • Romero Segovia, V., Hägglund, T., & Åström, K. J (2014). Measurement noise filtering for PID controllers. Journal of Process Control, 24(4), 299–313. https://doi.org/10.1016/j.jprocont.2014.01.017
  • Silva, G. J., Datta, A., & Bhattacharyya, S. P. (2005). PID controllers for time-delay systems. Vol. 43, Springer.
  • Suh, I. H., & Bien, Z. (1979). Proportional minus delay controller. IEEE Transactions Automatic Control, 24(2), 370–372. https://doi.org/10.1109/TAC.1979.1102024
  • Villafuerte, R., Mondié, S., & Garrido, R. (2012). Tuning of proportional retarded controllers: theory and experiments. IEEE Transactions on Control Systems Technology, 21(3), 983–990. https://doi.org/10.1109/TCST.2012.2195664
  • Villafuerte-Segura, R. (2023). Delayed controllers for time-delay systems. Communications in Nonlinear Science and Numerical Simulation, 117, 106934. https://doi.org/10.1016/j.cnsns.2022.106934
  • Wu, Y., Yin, S., Li, H., & Ma, W. (2019). Impact of RC snubber on switching oscillation damping of SiC MOSFET with analytical model. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1), 163–178. https://doi.org/10.1109/JESTPE.6245517
  • Zítek, P., Fišer, J., & Vyhlídal, T. (2013). Dimensional analysis approach to dominant three-pole placement in delayed PID control loops. Journal Process Control, 23(8), 1063–1074. https://doi.org/10.1016/j.jprocont.2013.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.