266
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fixed-time integral fast nonsingular terminal sliding mode control and its application to chaos suppression in gyros system

&
Pages 1762-1769 | Received 21 May 2022, Accepted 17 Jun 2023, Published online: 27 Jun 2023

References

  • Baik, I. C., Kim, K. H., & Youn, M. J. (2000). Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique. IEEE Transactions on Control Systems Technology, 8(1), 47–54. https://doi.org/10.1109/87.817691
  • Basin, M. V., & Pinsky, M. A. (1998). Stability impulse control of faulted nonlinear systems. IEEE Transactions on Automatic Control, 43(11), 1604–1608. https://doi.org/10.1109/9.728879
  • Chen, C., Li, L. X., Peng, H. P., & Yang, Y. X. (2019). Fixed-time synchronization of inertial memristor-based neural networks with discrete delay. Neural Networks, 109, 81–89. https://doi.org/10.1016/j.neunet.2018.10.011
  • Chen, H. K. (2002). Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. Journal of Sound and Vibration, 255( 4), 719–740. https://doi.org/10.1006/jsvi.2001.4186
  • Esfandiari, K., Abdollahi, F., & Talebi, H. A. (2014). Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2311–2322. https://doi.org/10.1109/TNNLS.2014.2378991
  • Incremona, G. P., Rubagotti, M., & Ferrara, A. (2016). Sliding mode control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 62(6), 2965–2972. https://doi.org/10.1109/TAC.2016.2605043
  • Jiang, Y., Hu, Q. L., & Ma, G. F. (2010). Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Transactions, 49(1), 57–69. https://doi.org/10.1016/j.isatra.2009.08.003
  • Lei, Q., & Zhang, W. D. (2019). Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Transactions on Industrial Informatics, 16(2), 1248–1258.
  • Lei, Y. M., Xu, W., & Zheng, H. C. (2005). Synchronization of two chaotic nonlinear gyros using active control. Physics Letters A, 343( 1-3), 153–158. https://doi.org/10.1016/j.physleta.2005.06.020
  • Li, H. Y., Wang, J. H., & Shi, P. (2015). Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Transactions on Fuzzy Systems, 24(6), 1282–1293. https://doi.org/10.1109/TFUZZ.2015.2513085
  • Lin, F. J., Huang, M. S., Chen, S. G., Hsu, C. W., & Liang, C. H. (2019). Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control. IEEE Transactions on Power Electronics, 35(7), 7465–7479. https://doi.org/10.1109/TPEL.63
  • Lin, Y. C., Balas, V. E., Balas, M. M., & Peng, J. Z. (2019). Adaptive backstepping nonsingular fast terminal sliding mode control for hydro-turbine governor design. IEEE/ASME Transactions on Mechatronics, 13(1), 126.
  • Liu, L., Chen, A. Q., & Liu, Y. J. (2021). Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 52(8), 7340–7351. https://doi.org/10.1109/TCYB.2021.3050510
  • Liu, Y. H., Su, C. Y., & Li, H. Y. (2021). Adaptive output feedback funnel control of uncertain nonlinear systems with arbitrary relative degree. IEEE Transactions on Automatic Control, 66(6), 2854–2860. https://doi.org/10.1109/TAC.2020.3012027
  • Liu, Y. J., Tong, S. C., & Chen, C. L. P. (2013). Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Transactions on Fuzzy Systems, 21(2), 275–288. https://doi.org/10.1109/TFUZZ.2012.2212200
  • Lu, K. F., & Xia, Y. Q. (2013). Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica, 49(12), 3591–3599. https://doi.org/10.1016/j.automatica.2013.09.001
  • Man, Z. H., O'Day, M., & Yu, X. G. (1999). A robust adaptive terminal sliding mode control for rigid robotic manipulators. Journal of Intelligent and Robotic Systems, 24(1), 23–41. https://doi.org/10.1023/A:1008058114520
  • Man, Z. H., Paplinski, P. A., & Wu, R. H. (1994). A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control , 39(12), 2464–2469. https://doi.org/10.1109/9.362847
  • Ni, J. K., Liu, L., Liu, C. X., Hu, X. Y., & Li, S. L. (2017). Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system. IEEE Transactions on Circuits and Systems II Express Briefs, 64(2), 151–155. https://doi.org/10.1109/TCSII.2016.2551539
  • Polyakov, A. (2012). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions Automation Control, 57(8), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869
  • Qian, C. J., & Lin, W. (2015). Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems and Control Letters, 42(3), 185–200. https://doi.org/10.1016/S0167-6911(00)00089-X
  • Rahman, F. U., Khan, Q., & Akmeliawati, R. (2018). Synchronization and anti-synchronization protocol design of chaotic nonlinear gyros: An adaptive integral sliding mode approach. Turkish Journal of Electrical Engineering and Computer Sciences, 27(1), 675–684. https://doi.org/10.3906/elk-1803-97
  • Shtessel, Y. B., Zinober, A. S. I., & Shkolnikov, I. A. (2003). Sliding mode control for nonlinear systems with output delay via method of stable system center. Journal of Dynamic Systems, 125(2), 253–257. https://doi.org/10.1115/1.1570855
  • Su, B., Wang, H. B., & Li, N. (2021). Event-triggered integral sliding mode fixed time control for trajectory tracking of autonomous underwater vehicle. Transactions of the Institute of Measurement and Control, 43(15), 3483–3496. https://doi.org/10.1177/0142331221994380
  • Tong, S., & Li, Y. (2012). Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Transactions on Fuzzy Systems, 20(1), 168–180. https://doi.org/10.1109/TFUZZ.2011.2171189
  • Utkin, V., & Shi, J. X. (1996). Integral sliding mode in systems operating under uncertainty conditions. In Proceedings of 35th IEEE conference on decision and control (Vol. 4, pp. 4591–4596). IEEE.
  • Van, M., Mavrovouniotis, M., & Ge, S. S. (2018). An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(7), 1448–1458. https://doi.org/10.1109/TSMC.6221021
  • Wu, L. B., Park, J. H., Xie, X. P., Gao, C., & Zhao, N. N. (2021). Fuzzy adaptive event-triggered control for a class of uncertain nonaffine nonlinear systems with full state constraints. IEEE Transactions on Fuzzy Systems, 29(4), 904–916. https://doi.org/10.1109/TFUZZ.2020.2966185
  • Yang, Y. N., Wu, J., & Zheng, W. (2012a). Attitude control for a station keeping airship using feedback linearization and fuzzy sliding mode control. International Journal of Innovative Computing, 8(12), 8299–8310.
  • Zhang, Z. Q., Xie, X. J., & Ge, S. S. (2019). Adaptive tracking for uncertain MIMO nonlinear systems with time-varying parameters and bounded disturbance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(7), 4479–4491. https://doi.org/10.1109/TSMC.2019.2939042
  • Zhu, Z., Xia, Y. Q., & Fu, M. Y. (2011). Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686–702. https://doi.org/10.1002/rnc.1624
  • Zou, A. M., Kumar, K. D., Hou, Z. G., & Liu, X. (2011). Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 41(4), 950–963. https://doi.org/10.1109/TSMCB.2010.2101592
  • Zuo, Z. Y., & Tie, L. (2014). Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Systems Science, 47(6), 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.