630
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stability of forced higher-order continuous-time Lur'e systems: a behavioural input-output perspective

&
Pages 1788-1809 | Received 06 Dec 2022, Accepted 28 Jun 2023, Published online: 04 Aug 2023

References

  • Ambrosetti, A., & Prodi, G. (1993). A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press.
  • Aminzare, Z., & Sontagy, E. D. (2014). Contraction methods for nonlinear systems: A brief introduction and some open problems. In 53rd IEEE conference on decision and control (pp. 3835–3847). IEEE.
  • Angeli, D. (2002). A Lyapunov approach to the incremental stability properties. IEEE Transactions on Automatic Control, 47(3), 410–421. https://doi.org/10.1109/9.989067
  • Arcak, M., & Teel, A. (2002). Input-to-state stability for a class of Lurie systems. Automatica Journal of IFAC, 38(11), 1945–1949. https://doi.org/10.1016/S0005-1098(02)00100-0
  • Blomberg, H., & Ylinen, R. (1983). Algebraic theory for multivariable linear systems, Mathematics in Science and Engineering, vol. 166, Academic Press Inc.
  • Boiko, I. M., Kuznetsov, N. V., Mokaev, R. N., Mokaev, T. N., Yuldashev, M. V., & Yuldashev, R. V. (2022). On counter-examples to Aizerman and Kalman conjectures. International Journal of Control, 95(4), 906–913. https://doi.org/10.1080/00207179.2020.1830304
  • Brockett, R. W., & Willems, J. L. (1965a). Frequency domain stability criteria. I. IEEE Transactions on Automatic Control, AC-10(3), 255–261. https://doi.org/10.1109/TAC.1965.1098143
  • Brockett, R. W., & Willems, J. L. (1965b). Frequency domain stability criteria. II. IEEE Trans. Automatic Control, AC-10(4), 407–413. https://doi.org/10.1109/TAC.1965.1098198
  • Carrasco, J., & Heath, W. P. (2021). Absolute stability. In J. Webster (Ed.), Wiley encyclopedia of electrical and electronics engineering (pp. 1–12). John Wiley & Sons, Ltd.
  • Carrasco, J., Turner, M. C., & Heath, W. P. (2016). Zames-Falb multipliers for absolute stability: from O'Shea's contribution to convex searches. European Journal of Control, 28, 1–19. https://doi.org/10.1016/j.ejcon.2015.10.003
  • Chaillet, A., Angeli, D., & Ito, H. (2014). Combining iISS and ISS with respect to small inputs: the strong iISS property. IEEE Transactions on Automatic Control, 59(9), 2518–2524. https://doi.org/10.1109/TAC.9
  • Dashkovskiy, S., Efimov, D. V., & Sontag, E. D. (2011). Input to state stability and allied system properties. Automation and Remote Control, 72(8), 1579–1614. https://doi.org/10.1134/S0005117911080017
  • Deimling, K. (1985). Nonlinear functional analysis. Springer-Verlag.
  • Delchamps, D. F. (1988). State space and input-output linear systems. Springer-Verlag.
  • De Marco, G., Gorni, G., & Zampieri, G. (1994). Global inversion of functions: an introduction. Nonlinear Differential Equations and Applications NoDEA, 1(3), 229–248. https://doi.org/10.1007/BF01197748
  • Desoer, C. A., & Vidyasagar, M. (1975). Feedback systems: input-output properties. Academic Press.
  • Doetsch, G. (1950). Handbuch der Laplace-Transformation. Band I. Theorie der Laplace-Transformation. Verlag Birkhäuser.
  • Drummond, R., Guiver, C., & Turner, M. C (2022). Aizerman Conjectures for a class of multivariate positive systems. IEEE Transactions on Automatic Control, 68(8), 5073–5080. https://doi.org/10.1109/TAC.2022.3217740
  • Franco, D., Guiver, C., & Logemann, H. (2021). Persistence and stability for a class of forced positive nonlinear delay-differential systems. Acta Applicandae Mathematicae, 174(1), 1. https://doi.org/10.1007/s10440-021-00414-5
  • Fuhrmann, P. A., & Helmke, U. (2015). The mathematics of networks of linear systems, Universitext, Springer.
  • Gilmore, M. E., Guiver, C., & Logemann, H. (2020). Infinite-dimensional Lur'e systems with almost periodic forcing. Mathematics of Control, Signals, and Systems, 32(3), 327–360. https://doi.org/10.1007/s00498-020-00262-y
  • Gilmore, M. E., Guiver, C., & Logemann, H. (2021). Incremental input-to-state stability for Lur'e systems and asymptotic behaviour in the presence of Stepanov almost periodic forcing. Journal of Differential Equations, 300, 692–733. https://doi.org/10.1016/j.jde.2021.08.009
  • Gohberg, I., Lancaster, P., & Rodman, L. (1982). Matrix polynomials, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].
  • Guiver, C., & Logemann, H. (2020). A circle criterion for strong integral input-to-state stability. Automatica, 111, Article 108641. https://doi.org/10.1016/j.automatica.2019.108641
  • Guiver, C., & Logemann, H. (2022). The circle criterion for a class of sector-bounded dynamic nonlinearities. Mathematics of Control, Signals, and Systems, 34(3), 461–492. https://doi.org/10.1007/s00498-022-00324-3
  • Guiver, C., Logemann, H., & Opmeer, M. R. (2017). Transfer functions of infinite-dimensional systems: positive realness and stabilization. Mathematics of Control, Signals, and Systems, 29(4), 1–61. https://doi.org/10.1007/s00498-017-0203-z
  • Guiver, C., Logemann, H., & Opmeer, M. R. (2019). Infinite-dimensional Lur'e systems: Input-to-state stability and convergence properties. SIAM Journal on Control and Optimization, 57(1), 334–365. https://doi.org/10.1137/17M1150426
  • Haddad, W. M., & Chellaboina, V. (2008). Nonlinear dynamical systems and control. Princeton University Press.
  • Hinrichsen, D., & Pritchard, A. J. (1992). Destabilization by output feedback. Differential and Integral Equations, 5(2), 357–386. https://doi.org/10.57262/die/1371043976
  • Hinrichsen, D., & Pritchard, A. J. (2010). Mathematical systems theory I, Texts in Applied Mathematics vol 48, Springer.
  • Jayawardhana, B., Logemann, H., & Ryan, E. P. (2009). Input-to-state stability of differential inclusions with applications to hysteretic and quantized feedback systems. SIAM Journal on Control and Optimization, 48(2), 1031–1054. https://doi.org/10.1137/070711323
  • Jayawardhana, B., Logemann, H., & Ryan, E. P. (2011). The circle criterion and input-to-state stability. IEEE Control Systems Magazine, 31(4), 32–67. https://doi.org/10.1109/MCS.2011.941143
  • Kailath, T. (1980). Linear systems, Prentice-Hall Information and System Sciences Series, Prentice-Hall, Inc.
  • Kellett, C. M. (2014). A compendium of comparison function results. Mathematics of Control, Signals, and Systems, 26(3), 339–374. https://doi.org/10.1007/s00498-014-0128-8
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
  • Kwakernaak, H., & Sivan, R. (1991). Modern signals and systems. Prentice-Hall.
  • Leonov, G. A. (2001). Mathematical problems of control theory, Series on Stability, Vibration and Control of Systems. Series A: Textbooks, Monographs and Treatises, vol. 6, World Scientific Publishing Co., Inc.
  • Logemann, H., & Townley, S. (1997). Discrete-time low-gain control of uncertain infinite-dimensional systems. IEEE Transactions on Automatic Control, 42(1), 22–37. https://doi.org/10.1109/9.553685
  • Mironchenko, A. (2019). Criteria for input-to-state practical stability. IEEE Transactions on Automatic Control, 64(1), 298–304. https://doi.org/10.1109/TAC.2018.2824983
  • Pendharkar, I., & Pillai, H. K. (2008). Systems with sector bound nonlinearities: A behavioral approach. Systems & Control Letters, 57(2), 112–122. https://doi.org/10.1016/j.sysconle.2007.06.019
  • Polderman, J. W., & Willems, J. C. (1998). Introduction to mathematical systems theory, Texts in Applied Mathematics, vol. 26. Springer-Verlag.
  • Rosenbrock, H. H. (1970). State-space and multivariable theory. John Wiley & Sons, Inc. [Wiley Interscience Division].
  • Rüffer, B. S., van de Wouw, N., & Mueller, M. (2013). Convergent system vs. incremental stability. Systems & Control Letters, 62(3), 277–285. https://doi.org/10.1016/j.sysconle.2012.11.015
  • Sandberg, I. W. (1980). Global inverse function theorems. IEEE Transactions on Circuits and Systems, 27(11), 998–1004. https://doi.org/10.1109/TCS.1980.1084740
  • Sarkans, E., & Logemann, H. (2015). Input-to-state stability of Lur'e systems. Mathematics of Control, Signals, and Systems, 27(4), 439–465. https://doi.org/10.1007/s00498-015-0147-0
  • Sarkans, E., & Logemann, H. (2016a). Stability of higher-order discrete-time Lur'e systems. Linear Algebra and Its Applications, 506, 183–211. https://doi.org/10.1016/j.laa.2016.05.012
  • Sarkans, E., & Logemann, H. (2016b). Input-to-state stability of discrete-time Lur'e systems. SIAM Journal on Control and Optimization, 54(3), 1739–1768. https://doi.org/10.1137/130939067
  • Sepulchre, R., Chaffey, T., & Forni, F. (2022). On the incremental form of dissipativity. arXiv preprint. https://doi.org/10.48550/arXiv.2208.04879
  • Sontag, E. D. (1989). Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34(4), 435–443. https://doi.org/10.1109/9.28018
  • Sontag, E. D. (2008). Input to state stability: Basic concepts and results. In Nonlinear and optimal control theory. Lecture Notes in Math., vol. 1932 (pp. 163–220). Springer.
  • Sontag, E. D., & Wang, Y. (1999). Notions of input to output stability. Systems & Control Letters, 38(4–5), 235–248. https://doi.org/10.1016/S0167-6911(99)00070-5
  • Vidyasagar, M. (2002). Nonlinear systems analysis, Classics in Applied Mathematics, vol. 42, Society for Industrial and Applied Mathematics (SIAM). Reprint of the second (1993) edition.
  • Willems, J. C. (1983). Input-output and state-space representations of finite-dimensional linear time-invariant systems. Linear Algebra and Its Applications, 50, 581–608. https://doi.org/10.1016/0024-3795(83)90070-8
  • Willems, J. L. (1970). Stability theory of dynamical systems. John Wiley & Sons.
  • Yakubovich, V. A., Leonov, G. A., & Gelig, A. K. (2004). Stability of stationary sets in control systems with discontinuous nonlinearities, Series on Stability, Vibration and Control of Systems. Series A: Textbooks, Monographs and Treatises, vol. 14, World Scientific Publishing Co., Inc.
  • Zemanian, A. H. (1987). Distribution theory and transform analysis. Dover Publications, Inc. Reprint of the 1965 original published by McGraw-Hill.