114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An annular event-triggered artificial time-delayed control-based guidance approach

, ORCID Icon, &
Received 03 Feb 2023, Accepted 07 Sep 2023, Published online: 27 Sep 2023

References

  • Alsaggaf, A. U., Al-Saggaf, U. M., Moinuddin, M., Alsaggaf, A. U., Alattas, B. A., Banerjee, A., Nabi, M. U., & Sarkar, R. (2022, May 31). Method for robust liquid level control based on artificial time-delay control using IMC feedback. Google Patents. US Patent 11,347,190.
  • Amrr, S. M., Banerjee, A., & Nabi, M. (2020). Fault-Tolerant attitude control of small spacecraft using robust artificial time delay approach. IEEE Journal on Miniaturization for Air and Space Systems, 1(3), 179–187.
  • Baek, S., Baek, J., Choi, J., & Han, S. (2022, June). A reinforcement learning-based adaptive time-delay control and its application to robot manipulators. 2022 American Control Conference (ACC) (pp. 2722–2729). IEEE.
  • Banerjee, A., & Hashemi, E. (2022). Slip-aware networked vehicular model and control for connected automated driving. 2022 IEEE 25th international conference on intelligent transportation systems (ITSC) (pp. 2818–2823). IEEE.
  • Banerjee, A., & Mukherjee, J. (2020). Time-energy efficient guidance strategy for a realistic 3D interceptor: An adaptive robust time-delayed control approach with input saturation. Aerospace Science and Technology, 104, Article 106015. https://doi.org/10.1016/j.ast.2020.106015
  • Banerjee, A., Mukherjee, J., & Kar, I. N. (2020). An artificial delay based robust guidance strategy for an interceptor with input saturation. ISA Transactions, 109, 34–48.
  • Banerjee, A., Nabi, M., & Raghunathan, T. (2020). Time-energy optimal guidance strategy for realistic interceptor using pseudospectral method. Transactions of the Institute of Measurement and Control, 42(13), 2361–2371.
  • Behera, A. K., & Bandyopadhyay, B. (2016). Event-triggered sliding mode control for a class of nonlinear systems. International Journal of Control, 89(9), 1916–1931. https://doi.org/10.1080/00207179.2016.1142617
  • Borgers, D. P., & Heemels, W. M. H. (2014). Event-separation properties of event-triggered control systems. IEEE Transactions on Automatic Control, 59(10), 2644–2656. https://doi.org/10.1109/TAC.9
  • Duvvuru, R., Maity, A., & Umakant, J. (2022). Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization. Aerospace Science and Technology, Article 107552. https://doi.org/10.1016/j.ast.2022.107552
  • Fromion, V., Scorletti, G., & Ferreres, G. (1999). Nonlinear performance of a PI controlled missile: An explanation. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 9(8), 485–518. https://doi.org/10.1002/(ISSN)1099-1239
  • Guelman, M. (1971). A qualitative study of proportional navigation. IEEE Transactions on Aerospace and Electronic Systems, AES-7(4), 637–643. https://doi.org/10.1109/taes.1971.310406
  • Guo, Z., Guo, J., Wang, X., Chang, J., & Huang, H. (2021). Sliding mode control for systems subjected to unmatched disturbances/unknown control direction and its application. International Journal of Robust and Nonlinear Control, 31(4), 1303–1323. https://doi.org/10.1002/rnc.v31.4
  • He, S., Lin, D., & Wang, J. (2015). Continuous second-order sliding mode based impact angle guidance law. Aerospace Science and Technology, 41, 199–208. https://doi.org/10.1016/j.ast.2014.11.020
  • Heemels, W., Johansson, K. H., & Tabuada, P. (2012). An introduction to event-triggered and self-triggered control. 2012 IEEE 51st IEEE conference on decision and control (CDC) (pp. 3270–3285). IEEE.
  • Ji, Y., Lin, D., Pei, P., Shi, X., & Wang, W. (2019). Robust partial integrated guidance and control approaches for maneuvering targets. International Journal of Robust and Nonlinear Control, 29(18), 6522–6541. https://doi.org/10.1002/rnc.v29.18
  • Jin, M., Kang, S. H., & Chang, P. H. (2008). Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Transactions on Industrial Electronics, 55(1), 258–269. https://doi.org/10.1109/TIE.2007.906132
  • Khalil, H. K. (2015). Nonlinear control (Vol. 406). Pearson New York.
  • Lee, J., Yoo, C., Park, Y. S., Park, B., Lee, S. J., Gweon, D. G., & Chang, P. H. (2012). An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle. Mechatronics, 22(2), 184–194. https://doi.org/10.1016/j.mechatronics.2012.01.005
  • Liu, X., Su, X., Shi, P., Shen, C., & Peng, Y. (2020). Event-triggered sliding mode control of nonlinear dynamic systems. Automatica, 112, Article 108738. https://doi.org/10.1016/j.automatica.2019.108738
  • Ming, C., Wang, X., & Sun, R. (2019). A novel non-singular terminal sliding mode control-based integrated missile guidance and control with impact angle constraint. Aerospace Science and Technology, 94, Article 105368. https://doi.org/10.1016/j.ast.2019.105368
  • Mukherjee, J., Roy, S., Kar, I. N., & Mukherjee, S. (2021). Maneuvering control of planar snake robot: An adaptive robust approach with artificial time delay. International Journal of Robust and Nonlinear Control, 31(9), 3982–3999. https://doi.org/10.1002/rnc.v31.9
  • Raghunathan, T., & Ghose, D. (2010). An online-implementable differential evolution tuned all-aspect guidance law. Control Engineering Practice, 18(10), 1197–1210. https://doi.org/10.1016/j.conengprac.2010.05.013
  • Roy, S., Kar, I. N., & Lee, J. (2017). Toward position-only time-delayed control for uncertain Euler–Lagrange systems: Experiments on wheeled mobile robots. IEEE Robotics and Automation Letters, 2(4), 1925–1932. https://doi.org/10.1109/LRA.2017.2715884
  • Roy, S., Nandy, S., Ray, R., & Shome, S. N. (2015). Robust path tracking control of nonholonomic wheeled mobile robot: Experimental validation. International Journal of Control, Automation and Systems, 13(4), 897–905. https://doi.org/10.1007/s12555-014-0178-1
  • Sarkar, R., Amrr, S. M., Bhutto, J. K., Saidi, A. S., Algethami, A., & Banerjee, A. (2023). Finite time fractional order ISMC with time delay estimation for re-entry phase of RLV with enhanced chattering suppression. Acta Astronautica, 202, 130–138. https://doi.org/10.1016/j.actaastro.2022.10.002
  • Sarkar, R., Mukherjee, J., Patil, D., & Kar, I. N. (2020). Re-entry trajectory tracking of reusable launch vehicle using artificial delay based robust guidance law. Advances in Space Research, 67(1), 557–570.
  • Sato, M. (2019). Robust gain-scheduled flight controller for an in-flight simulator. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2122–2135.
  • Shima, T., Idan, M., & Golan, O. M. (2006). Sliding-mode control for integrated missile autopilot guidance. Journal of Guidance, Control, and Dynamics, 29(2), 250–260. https://doi.org/10.2514/1.14951
  • Song, H., Zhang, T., Zhang, G., & Lu, C. (2015). Integrated interceptor guidance and control with prescribed performance. International Journal of Robust and Nonlinear Control, 25(16), 3179–3194. https://doi.org/10.1002/rnc.v25.16
  • Theodoulis, S., Proff, M., & Marchand, C. (2020). Robust design for highly agile missile autopilots. 2020 28th Mediterranean conference on control and automation (MED) (pp. 67–72). IEEE.
  • Weiss, M., & Shima, T. (2018). Linear quadratic optimal control-based missile guidance law with obstacle avoidance. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 205–214. https://doi.org/10.1109/TAES.2018.2849901
  • Xia, Y., Lu, K., Zhu, Z., & Fu, M. (2013). Adaptive back-stepping sliding mode attitude control of missile systems. International Journal of Robust and Nonlinear Control, 23(15), 1699–1717. https://doi.org/10.1002/rnc.v23.15
  • Xu, T., Liu, S., & Wei, G. (2022). Event-based finite-time H synchronization control for switched complex networks with average dwell time. International Journal of Robust and Nonlinear Control, 32(6), 3923–3943. https://doi.org/10.1002/rnc.v32.6
  • Ye, W., Zhang, P., & Wang, Y. (2022). Data-driven time-delayed control for Euler–Lagrange systems. 2022 IEEE conference on control technology and applications (CCTA) (pp. 926–931). IEEE.
  • Zarchan, P. (2012). Tactical and strategic missile guidance. American Institute of Aeronautics and Astronautics, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.