272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Data-driven safe control via finite-time Koopman identifier

&
Received 06 Oct 2022, Accepted 24 Sep 2023, Published online: 17 Oct 2023

References

  • Andrzejewski, R., & Awrejcewicz, J. (2006). Nonlinear dynamics of a wheeled vehicle (Vol. 10). Springer Science & Business Media.
  • Arbabi, H., Korda, M., & Mezić, I. (2018). A data-driven Koopman model predictive control framework for nonlinear partial differential equations. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 6409–6414).
  • Arbabi, H., & Mezic, I. (2017). Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4), 2096–2126. https://doi.org/10.1137/17M1125236
  • Bahouth, G. (2005). Real world crash evaluation of vehicle stability control (VSC) technology. In Annual proceedings/association for the advancement of automotive medicine (Vol. 49, pp. 19).
  • Bai, Z., Kaiser, E., Proctor, J. L., Kutz, J. N., & Brunton, S. L. (2020). Dynamic mode decomposition for compressive system identification. AIAA Journal, 58(2), 561–574. https://doi.org/10.2514/1.J057870
  • Bisoffi, A., De Persis, C., & Tesi, P. (2020a). Controller design for robust invariance from noisy data. ArXiv preprint arXiv:2007.13181.
  • Bisoffi, A., De Persis, C., & Tesi, P. (2020b). Data-based guarantees of set invariance properties. IFAC-PapersOnLine, 53(2), 3953–3958. https://doi.org/10.1016/j.ifacol.2020.12.2250
  • Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time systems. Systems & Control Letters, 11(3), 243–248. https://doi.org/10.1016/0167-6911(88)90065-5
  • Bitsoris, G., & Vassilaki, M. (2015a). Robust set invariance and contractivity of continuous-time systems. In 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM) (pp. 59–64).
  • Bitsoris, G., & Vassilaki, M. (2015b). Robust set invariance and contractivity of discrete-time systems: The generators approach. In 2015 23rd Mediterranean Conference on Control and Automation (MED) (pp. 662–666).
  • Blanchini, F. (1990). Feedback control for linear time-invariant systems with state and control bounds in the presence of disturbances. IEEE Transactions on Automatic Control, 35(11), 1231–1234. https://doi.org/10.1109/9.59808
  • Blanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747–1767. https://doi.org/10.1016/S0005-1098(99)00113-2
  • Blanchini, F., & Miani, S. (2008). Set-theoretic methods in control. Springer.
  • Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
  • Brunton, S. L., Brunton, B. W., Proctor, J. L., & Kutz, J. N. (2016). Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PloS One, 11(2), https://doi.org/10.1371/journal.pone.0150171Article e0150171.
  • Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press.
  • Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15), 3932–3937. https://doi.org/10.1073/pnas.1517384113
  • Campi, M. C., Calafiore, G., & Garatti, S. (2009). Interval predictor models: Identification and reliability. Automatica, 45(2), 382–392. https://doi.org/10.1016/j.automatica.2008.09.004
  • Campi, M. C., Garatti, S., & Prandini, M. (2009). The scenario approach for systems and control design. Annual Reviews in Control, 33(2), 149–157. https://doi.org/10.1016/j.arcontrol.2009.07.001
  • Cibulka, V. (2019). Mpc based control algorithms for vehicle control [Unpublished doctoral dissertation, Master's thesis]. CTU in Prague.
  • Cibulka, V., Haniš, T., & Hromčík, M. (2019). Data-driven identification of vehicle dynamics using Koopman operator. In 2019 22nd International Conference on Process Control (pc19) (pp. 167–172).
  • Cibulka, V., Haniš, T., Korda, M., & Hromčík, M. (2020). Model predictive control of a vehicle using Koopman operator. IFAC-PapersOnLine, 53(2), 4228–4233. https://doi.org/10.1016/j.ifacol.2020.12.2469
  • de Souza Mendes, A., Meneghetti, D. D. R., Ackermann, M., & de Toledo Fleury, A. (2016). Vehicle dynamics-lateral: Open source simulation package for matlab (Tech. Rep.). SAE Technical Paper.
  • Fényes, D., Németh, B., & Gáspár, P. (2019). Lateral control design for autonomous vehicles using a big data-based approach. In The Iavsd International Symposium on Dynamics of Vehicles on Roads and Tracks (pp. 1137–1143).
  • Fényes, D., Németh, B., & Gáspár, P. (2021). A novel data-driven modeling and control design method for autonomous vehicles. Energies, 14(2), 517. https://doi.org/10.3390/en14020517
  • Filippov, A. (1988). Differential equations with discontinuous righthand sides: Control systems (Vol. 18). Springer Science & Business Media.
  • Filippov, A. F. (2013). Differential equations with discontinuous righthand sides: Control systems (Vol. 18). Springer Science & Business Media.
  • Folkestad, C., Chen, Y., Ames, A. D., & Burdick, J. W. (2020). Data-driven safety-critical control: Synthesizing control barrier functions with Koopman operators. IEEE Control Systems Letters, 5(6), 2012–2017. https://doi.org/10.1109/LCSYS.2020.3046159
  • Garg, K., & Panagou, D. (2021). Robust control barrier and control Lyapunov functions with fixed-time convergence guarantees. In 2021 American Control Conference (ACC) (pp. 2292–2297).
  • Henrion, D., Mezic, I., & Putinar, M. (2016). Applied Koopmanism. ArXiv preprint arXiv:1206.3164.
  • Huang, B., Ma, X., & Vaidya, U. (2020). Data-driven nonlinear stabilization using Koopman operator. In The Koopman operator in systems and control (pp. 313–334). Springer.
  • Huang, M., Gao, W., Wang, Y., & Jiang, Z. P. (2019). Data-driven shared steering control of semi-autonomous vehicles. IEEE Transactions on Human-Machine Systems, 49(4), 350–361. https://doi.org/10.1109/THMS.6221037
  • Kaiser, E., Kutz, J. N., & Brunton, S. L. (2021). Data-driven discovery of Koopman eigenfunctions for control. Machine Learning: Science and Technology, 2(3), Article 035023.
  • Kamalapurkar, R., Reish, B., Chowdhary, G., & Dixon, W. E. (2017). Concurrent learning for parameter estimation using dynamic state-derivative estimators. IEEE Transactions on Automatic Control, 62(7), 3594–3601. https://doi.org/10.1109/TAC.2017.2671343
  • Korda, M., & Mezić, I. (2018). On convergence of extended dynamic mode decomposition to the Koopman operator. Journal of Nonlinear Science, 28(2), 687–710. https://doi.org/10.1007/s00332-017-9423-0
  • Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). Dynamic mode decomposition: Data-driven modeling of complex systems. SIAM.
  • Li, D., Zhao, D., Zhang, Q., & Chen, Y. (2019). Reinforcement learning and deep learning based lateral control for autonomous driving [application notes]. IEEE Computational Intelligence Magazine, 14(2), 83–98. https://doi.org/10.1109/MCI.10207
  • Li, Y., Zhang, H., & Wang, Z. (2020). Data-driven lateral fault-tolerance control of autonomous vehicle system using reinforcement learning. In 2020 IEEE 16th International Conference on Control & Automation (ICCA) (pp. 1410–1415).
  • Li, Z., Mazouchi, M., Modares, H., Wang, X., & Sun, J. (2021). Finite-time adaptive output synchronization of uncertain nonlinear heterogeneous multi-agent systems. International Journal of Robust and Nonlinear Control, 31(18), 9416–9435. https://doi.org/10.1002/rnc.v31.18
  • Lin, Z., & Lv, L. (2007). Set invariance conditions for singular linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 52(12), 2351–2355. https://doi.org/10.1109/TAC.2007.910711
  • Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In 2004 IEEE International Conference on Robotics and Automation (ieee cat. no.04ch37508) (pp. 284-289). https://doi.org/10.1109/CACSD.2004.1393890
  • Matavalam, A. R. R., Vaidya, U., & Ajjarapu, V. (2020). Data-driven approach for uncertainty propagation and reachability analysis in dynamical systems. In 2020 American Control Conference (ACC) (pp. 3393–3398).
  • Meng, Q., Sun, Z.-Y., Shu, Y., & Liu, T. (2019). Lateral motion stability control of electric vehicle via sampled-data state feedback by almost disturbance decoupling. International Journal of Control, 92(4), 734–744. https://doi.org/10.1080/00207179.2017.1367104
  • Mishra, A., & Ghosh, S. (2022). Simultaneous identification and optimal tracking control of unknown continuous-time systems with actuator constraints. International Journal of Control, 95(8), 2005–2023. https://doi.org/10.1080/00207179.2021.1890824
  • Modares, H., Lewis, F. L., & Naghibi-Sistani, M. B. (2013). Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks. IEEE Transactions on Neural Networks and Learning Systems, 24(10), 1513–1525. https://doi.org/10.1109/TNNLS.2013.2276571
  • Namadchian, A., & Ramezani, M. (2019). Uncertainty quantification of model predictive control for nonlinear systems with parametric uncertainty using hybrid pseudo-spectral method. Cogent Engineering, 6(1), Article 1691803.
  • Narasingam, A., & Kwon, J. S. I. (2019). Koopman Lyapunov-based model predictive control of nonlinear chemical process systems. AIChE Journal, 65(11), https://doi.org/10.1002/aic.v65.11Article e16743.
  • Narasingam, A., Son, S. H., & Kwon, J. S. I. (2023). Data-driven feedback stabilization of nonlinear systems: Koopman-based model predictive control. International Journal of Control, 96(3), 770–781. https://doi.org/10.1080/00207179.2021.2013541
  • National Highway Traffic Safety Administrationl. (2013). Preliminary statement of policy concerning automated vehicles. Washington, DC, 1, 14.
  • National Highway Traffic Safety Administration. (2020). Crash stats: Early estimate of motor vehicle traffic fatalities in 2020 (Report No. DOT HS 813 115). https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813115.pdfhttps://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813115.pdf
  • Paden, B., & Sastry, S. (1987). A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators. IEEE Transactions on Circuits and Systems, 34(1), 73–82. https://doi.org/10.1109/TCS.1987.1086038
  • Raković, S. V., Kern, B., & Findeisen, R. (2010). Practical set invariance for decentralized discrete time systems. In 49th IEEE Conference on Decision and Control (CDC) (pp. 3283–3288).
  • Reis, M. F., Aguiar, A. P., & Tabuada, P. (2021). Control barrier function-based quadratic programs introduce undesirable asymptotically stable equilibria. IEEE Control Systems Letters, 5(2), 731–736. https://doi.org/10.1109/LCSYS.2020.3004797
  • Rizvi, S. A. A., & Lin, Z. (2019). Experience replay–based output feedback Q-learning scheme for optimal output tracking control of discrete-time linear systems. International Journal of Adaptive Control and Signal Processing, 33(12), 1825–1842. https://doi.org/10.1002/acs.v33.12
  • Romdlony, M. Z., & Jayawardhana, B. (2016). Stabilization with guaranteed safety using control Lyapunov–barrier function. Automatica, 66, 39–47. https://doi.org/10.1016/j.automatica.2015.12.011
  • Romero, O., & Benosman, M. (2020). Finite-time convergence of continuous-time optimization algorithms via differential inclusions.
  • Son, S. H., Choi, H. K., & Kwon, J. S. I. (2021). Application of offset-free Koopman-based model predictive control to a batch pulp digester. AIChE Journal, 67(9), https://doi.org/10.1002/aic.v67.9. Article e17301.
  • Son, S. H., Choi, H. K., Moon, J., & Kwon, J. S. I. (2022). Hybrid Koopman model predictive control of nonlinear systems using multiple EDMD models: An application to a batch pulp digester with feed fluctuation. Control Engineering Practice, 118, https://doi.org/10.1016/j.conengprac.2021.104956Article 104956.
  • Son, S. H., Narasingam, A., & Kwon, J. S. I. (2022). Development of offset-free Koopman Lyapunov-based model predictive control and mathematical analysis for zero steady-state offset condition considering influence of Lyapunov constraints on equilibrium point. Journal of Process Control, 118, 26–36. https://doi.org/10.1016/j.jprocont.2022.08.005
  • Sootla, A., Mauroy, A., & Ernst, D. (2018). Optimal control formulation of pulse-based control using Koopman operator. Automatica, 91, 217–224. https://doi.org/10.1016/j.automatica.2018.01.036
  • Soudbakhsh, D., & Eskandarian, A. (2012). Vehicle lateral and steering control. Handbook of Intelligent Vehicles, 209–232. https://doi.org/10.1007/978-0-85729-085-4
  • Tao, G. (2003). Adaptive control design and analysis (Vol. 37). John Wiley & Sons.
  • Tu, J. H. (2013). Dynamic mode decomposition: Theory and applications [Unpublished doctoral dissertation]. Princeton University.
  • Vassilaki, M., Hennet, J., & Bitsoris, G. (1988). Feedback control of linear discrete-time systems under state and control constraints. International Journal of Control, 47(6), 1727–1735. https://doi.org/10.1080/00207178808906132
  • Venkidasalapathy, J. A., & Kravaris, C. (2020). Safety-centered process control design based on dynamic safe set. Journal of Loss Prevention in the Process Industries, 65, Article 104126.
  • Wan, Y., Luo, J., Zhang, Q., Wu, W., Huang, Y., & Zhou, M. (2018). Controller design for avoiding collisions in automated guided vehicle systems via labeled petri nets. IFAC-PapersOnLine, 51(7), 139–144. https://doi.org/10.1016/j.ifacol.2018.06.292
  • Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6), 1307–1346. https://doi.org/10.1007/s00332-015-9258-5
  • Wu, Z., Durand, H., & Christofides, P. D. (2018). Safe economic model predictive control of nonlinear systems. Systems & Control Letters, 118, 69–76. https://doi.org/10.1016/j.sysconle.2018.05.013
  • Xiao, Y., Zhang, X., Xu, X., Liu, X., & Liu, J. (2020). A deep learning framework based on Koopman operator for data-driven modeling of vehicle dynamics. ArXiv preprint arXiv:2007.02219.
  • Zhang, F., Zhou, M., Qi, L., Du, Y., & Sun, H. (2019). A game theoretic approach for distributed and coordinated channel access control in cooperative vehicle safety systems. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2297–2309. https://doi.org/10.1109/TITS.6979
  • Zhang, Z., Wu, Z., Durand, H., Albalawi, F., & Christofides, P. D. (2018). On integration of feedback control and safety systems: Analyzing two chemical process applications. Chemical Engineering Research and Design, 132, 616–626. https://doi.org/10.1016/j.cherd.2018.02.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.