218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variable-gain sliding mode control for quadrotor vehicles: Lyapunov-based analysis and finite-time stability

, &
Received 12 Feb 2023, Accepted 14 Nov 2023, Published online: 24 Nov 2023

References

  • Alkomy, H., & Shan, J. (2021). Vibration reduction of a quadrotor with a cable-suspended payload using polynomial trajectories. Nonlinear Dynamics, 104, 3713–3735. https://doi.org/10.1007/s11071-021-06464-6
  • Álvarez-Rodríguez, S., Flores, G., & Ochoa, N. A. (2019). Variable gains sliding mode control. International Journal of Control, Automation and Systems, 17(3), 555–564. https://doi.org/10.1007/s12555-018-0095-9
  • Arogeti, S., & Ailon, A. (2020). Low level formation controls for a group of quadrotors with model uncertainties. International Journal of Control, 93(7), 1534–1546. https://doi.org/10.1080/00207179.2018.1515500
  • Astec (2021). Astec Pelican Quadrotor. https://mrsdprojects.ri.cmu.edu/2018teamg/documentation/asctec-pelican-uav-setup-guidance/
  • Bernuau, E., Efimov, D., Perruquetti, W., & Polyakov, A. (2014). On homogeneity and its application in sliding mode control. Journal of the Franklin Institute, 351, 1866–1901. https://doi.org/10.1016/j.jfranklin.2014.01.007
  • Bisheban, M., & Lee, T. (2020). Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Transactions on Control Systems Technology, 29(4), 1533–1548. https://doi.org/10.1109/TCST.2020.3006184
  • Boiko, I. (2009). Discontinuous control systems: Frequency-domain analysis and design. Birkäuser.
  • Camci, E., Kripalani, D. R., Ma, L., Kayacan, E., & Khanesar, M. A. (2018). An aerial robot for rice farm quality inspection with type-2 fuzzy neural networks tuned by particle swarm optimization-sliding mode control hybrid algorithm. Swarm and Evolutionary Computation, 41, 1–8. https://doi.org/10.1016/j.swevo.2017.10.003
  • Chovancová, A., Fico, T., Chovanec, L., & Hubinský, P. (2014). Mathematical modelling and parameter identification of quadrotor (a survey). Procedia Engineering, 96, 172–181. https://doi.org/10.1016/j.proeng.2014.12.139
  • Cruz-Zavala, E., & Moreno, J. A. (2017). Homogeneous high order sliding mode design: A Lyapunov approach. Automatica, 80, 232–238. https://doi.org/10.1016/j.automatica.2017.02.039
  • Cruz-Zavala, E., Moreno, J. A., & Fridman, L. (2018). Lyapunov-based design for a class of variable-gain 2nd-sliding controllers with the desired convergence rate. International Journal of Robust Nonlinear Control, 28, 5279–5296. https://doi.org/10.1002/rnc.v28.17
  • Cruz-Zavala, E., Nuño, E., & Moreno, J. A. (2019). Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping. International Journal of Robust and Nonlinear Control, 29(17), 6006–6030. https://doi.org/10.1002/rnc.v29.17
  • Eliker, K., Grouni, S., Tadjine, M., & Zhang, W. (2020). Practical finite time adaptive robust flight control system for quad-copter UAVs. Aerospace Science and Technology, 98, 1–21. https://doi.org/10.1016/j.ast.2020.105708
  • Espinosa, C. I., Vázquez, A. J. M., Orta, A. S., Vega, V. P., & Sanahuja, G. (2016). Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation. Control Engineering Practice, 53, 47–56. https://doi.org/10.1016/j.conengprac.2016.04.016
  • Faessler, M., Franchi, A., & Scaramuzza, D. (2018). Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robotics and Automation Letters, 3(2), 620–626. https://doi.org/10.1109/LRA.2017.2776353
  • Filippov, A. F. (1988). Differential equation with discontinuous righthand sides. Kluwer Academic Publisher.
  • Gonzalez, T., Moreno, J. A., & Fridman, L. (2012). Variable gain super-twisting sliding mode control. IEEE Transactions on Automatic Control, 57(8), 2100–2105. https://doi.org/10.1109/TAC.2011.2179878
  • Gu, Y., Yu, X., Guo, K., Qiao, J., & Guo, L. (2021). Detection, estimation, and compensation of false data injection attack for UAVs. Information Sciences, 546, 723–741. https://doi.org/10.1016/j.ins.2020.08.055
  • Hoffmann, G. M., Huang, H., Waslander, S. L., & Tomlin, C. J. (2011). Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Engineering Practice, 19(9), 1023–1036. https://doi.org/10.1016/j.conengprac.2011.04.005
  • Hua, H., Fang, Y., Zhang, X., & Lu, B. (2020). A novel robust observer-based nonlinear trajectory tracking control strategy for quadrotors. IEEE Transactions on Control Systems Technology, 29, 1952–1963. https://doi.org/10.1109/TCST.2020.3024805
  • Hua, Y., Dong, X., Hu, G., Li, Q., & Ren, Z. (2019). Distributed time-varying output formation tracking for heterogeneous linear multiagent systems with a nonautonomous leader of unknown input. IEEE Transactions on Automatic Control, 64(10), 4292–4299. https://doi.org/10.1109/TAC.9
  • Izaguirre-Espinosa, C., Muñoz-Vazquez, A. J., Sanchez-Orta, A., Parra-Vega, V., & Fantoni, I. (2019). Fractional-order control for robust position/yaw tracking of quadrotors with experiments. IEEE Transactions on Control Systems Technology, 27(4), 1645–1650. https://doi.org/10.1109/TCST.87
  • Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., & Ai, X. (2017). Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science and Technology, 68, 299–307. https://doi.org/10.1016/j.ast.2017.05.022
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
  • Koksal, N., An, H., & Fidan, B. (2020). Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance. ISA Transactions, 105, 98–110. https://doi.org/10.1016/j.isatra.2020.06.006
  • Labbadi, M., & Cherkaoui, M. (2020). Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Transactions, 99, 290–304. https://doi.org/10.1016/j.isatra.2019.10.012
  • Lambert, N. O., Drew, D. S., Yaconelly, J., Levine, S., Calandra, R., & K. S. J. Pister (2019). Low-level control of a quadrotor with deep model-based reinforcement learning. IEEE Robotics and Automation Letters, 4(4), 4224–4230. https://doi.org/10.1109/LSP.2016
  • Lian, S., Meng, W., Lin, Z., Shao, K., Zheng, J., Li, H., & Lu, R. (2022). Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode. IEEE Transactions on Industrial Electronics, 69(2), 1597–1607. https://doi.org/10.1109/TIE.2021.3057015
  • Lian, S., Meng, W., Shao, K., Zheng, J., Zhu, S., & Li, H. (2023). Full attitude control of a quadrotor using fast nonsingular terminal sliding mode with angular velocity planning. IEEE Transactions on Industrial Electronics, 70(4), 3975–3984. https://doi.org/10.1109/TIE.2022.3176314
  • Liu, H., Peng, F., Modares, H., & Kiumarsi, B. (2021). Heterogeneous formation control of multiple rotorcrafts with unknown dynamics by reinforcement learning. Information Sciences, 558, 194–207. https://doi.org/10.1016/j.ins.2021.01.011
  • Mechali, O., Xu, L., Huang, Y., Shi, M., & Xie, X. (2021). Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiments. Control Engineering Practice, 111, 104806. https://doi.org/10.1016/j.conengprac.2021.104806
  • Miranda-Colorado, R. (2016). Kinematics and dynamics of robot manipulators (in Spanish). Alfaomega.
  • Miranda-Colorado, R., & Aguilar, L. T. (2020). Robust PID control of quadrotors with power reduction analysis. ISA Transactions, 98, 47–62. https://doi.org/10.1016/j.isatra.2019.08.045
  • Miranda-Colorado, R., Aguilar, L. T., & Herrero-Brito, J. E. (2018). Reduction of power consumption on quadrotor vehicles via trajectory design and a controller-gains tuning stage. Aerospace Science and Technology, 78, 280–296. https://doi.org/10.1016/j.ast.2018.04.027
  • Nian, X., Chen, W., Chu, X., & Xu, Z. (2020). Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. International Journal of Control, 93(3), 725–737. https://doi.org/10.1080/00207179.2018.1484573
  • Orlov, Y., Aguilar, L., & Cadiou, J. C. (2003). Switched chattering control vs. backlash/friction phenomena in electrical servo-motors. International Journal of Control, 76(9-10), 959–967. https://doi.org/10.1080/0020717031000099056
  • Orlov, Y., Alvarez, J., Acho, L., & Aguilar, L. (2003). Global position regulation of friction manipulators via switched chattering control. International Journal of Control, 76(14), 1446–1452. https://doi.org/10.1080/0020717031000149627
  • Osuna, T., Orlov, Y., & Aguilar, L. (2018). L2-gain tuning of variable structure SISO systems of relative degree n. International Journal of Control, 91(11), 2422–2444. https://doi.org/10.1080/00207179.2016.1272717
  • Polyakov, A. (2020). Generalized homogeneity in systems and control. Springer International Publishing.
  • Polyakov, A., Efimov, D., & Perruquetti, W. (2015). Finite-time and fixed-time stabilization: Implicit lyapunov function approach. Automatica, 51, 332–340. https://doi.org/10.1016/j.automatica.2014.10.082
  • ROS (2021). Astec Pelican and ROS. https://robots.ros.org/astec-pelican-and-hummingbird/
  • Shao, X., Sun, G., Yao, W., Liu, J., & Wu, L. (2022). Adaptive sliding mode control for quadrotor UAVs with input saturation. IEEE/ASME Transactions on Mechatronics, 27(3), 1498–1509. https://doi.org/10.1109/TMECH.2021.3094575
  • Shen, Z., Li, F., Cao, X., & Guo, C. (2021). Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. International Journal of Control, 94(11), 2945–2955. https://doi.org/10.1080/00207179.2020.1743366
  • Shi, H., Hwang, K. S., Li, X., & Chen, J. (2019). A learning approach to image-based visual servoing with bagging method of velocity calculations. Information Sciences, 481, 244–257. https://doi.org/10.1016/j.ins.2018.12.082
  • Soni, S. K., Kamal, S., & Ghosh, S. (2022). Finite-time stabilization of nonlinear polytopic systems: A control Lyapunov function approach. IMA Journal of Mathematical Control and Information, 39, 219–234. https://doi.org/10.1093/imamci/dnab044
  • Sumantri, B., Uchiyama, N., & Sano, S. (2016). Least square based sliding mode control for a quad-rotor helicopter and energy saving by chattering reduction. Mechanical Systems and Signal Processing, 66-67, 769–784. https://doi.org/10.1016/j.ymssp.2015.05.013
  • Tan, C. K., Wang, J. L., Paw, Y. C., & Liao, F. (2019). Robust linear output feedback controller for autonomous landing of a quadrotor on a ship deck. International Journal of Control, 92(12), 2791–2805. https://doi.org/10.1080/00207179.2018.1459859
  • Tan, W., & Huang, N. (2022). Event-based rigid formation system with cooperative finite-time control. IMA Journal of Mathematical Control and Information, 39, 235–253. https://doi.org/10.1093/imamci/dnab041
  • Utkin, V., Poznyak, A., Orlov, Y. V., & Polyakov, A. (2020). Road map for sliding mode control design. Springer International Publishing.
  • Video (2023). Page with a video demonstrating the performance of the VG-SMC controller with small gains. created on May, 2023, from https://drive.google.com/file/d/1issaTKye_uHajDjYFfM0abwRGatfP563/view?usp=sharing
  • Wang, J., Mounier, H., & Niculescu, S. I. (2016). Event-driven model-free control in motion control with comparisons. IMA Journal of Mathematical Control and Information, 34, 1255–1275.
  • Wang, X., Kampen, E. J. van, & Chu, Q. (2019). Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control. Aerospace Science and Technology, 95, 1–14. https://doi.org/10.1016/j.ast.2018.07.023
  • Xu, L., Shao, X., & Zhang, W. (2021). USDE-based continuous sliding mode control for quadrotor attitude regulation: Method and application. IEEE Access, 9, 64153–64164. https://doi.org/10.1109/ACCESS.2021.3076076
  • Yang, Y., & Yan, Y. (2016). Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerospace Science and Technology, 54, 208–217. https://doi.org/10.1016/j.ast.2016.04.005
  • You, M., Zong, Q., & Tian, B. (2018). Fixed-time re-entry attitude control based on nonsingular terminal sliding mode. IMA Journal of Mathematical Control and Information, 35, 1043–1059. https://doi.org/10.1093/imamci/dnx010
  • Yu, L., He, G., Wang, X., & Shen, L. (2022). A novel fixed-time sliding mode control of quadrotor with experiments and comparisons. IEEE Control Systems Letters, 6, 770–775. https://doi.org/10.1109/LCSYS.2021.3086389

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.