0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A model-tuned backstepping control approach for angle demand following of steer-by-wire system

, , , , &
Received 03 Aug 2023, Accepted 04 Jun 2024, Published online: 18 Jun 2024

References

  • Chen, K., & Astolfi, A. (2021). Adaptive control for systems with time-varying parameters. IEEE Transactions on Automatic Control, 66(5), 1986–2001. https://doi.org/10.1109/TAC.2020.3046141
  • Chen, H., Tu, Y., Wang, H., Shi, K., & He, S. (2022). Fault-tolerant tracking control based on reinforcement learning with application to a steer-by-wire system. Journal of the Franklin Institute, 359(3), 1152–1171. https://doi.org/10.1016/j.jfranklin.2021.12.012
  • Dai, Y., Jia, D., Guo, L., Ye, S., Luo, D., Hu, W., & Peng, W. (2019). Backstepping controller for trajectory tracking of wheeled mobile robot based on particle swarm optimization. In 2019 Chinese Control Conference (CCC) (pp. 4259–4264). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.23919/ChiCC.2019.8866027
  • Dong, B., Lu, Y., Xie, W., Huang, L., Chen, W., Yang, Y., & Zhang, W. (2023). Robust performance-prescribed attitude control of foldable wave-energy powered AUV using optimized backstepping technique. IEEE Transactions on Intelligent Vehicles, 8(2), 1230–1240. https://doi.org/10.1109/TIV.2022.3189009
  • He, L., Guo, C., Xu, Z., Huang, C., Wei, Y., & Shi, Q. (2023). Particle-swarm backstepping control for angle tracking of electric motor steer-by-wire system. IEEE Transactions on Transportation Electrification, 9(2), 2038–2047. https://doi.org/10.1109/TTE.2022.3209521
  • He, L., Li, F., Guo, C., Gao, B., Lu, J., & Shi, Q. (2022). An adaptive PI controller by particle swarm optimization for angle tracking of steer-by-wire. IEEE/ASME Transactions on Mechatronics, 27(5), 3830–3840. https://doi.org/10.1109/TMECH.2021.3137848
  • He, Z., Shi, Q., Wei, Y., Zheng, J., Gao, B., & He, L. (2021). A torque demand model predictive control approach for driving energy optimization of battery electric vehicle. IEEE Transactions on Vehicular Technology, 70(4), 3232–3242. https://doi.org/10.1109/TVT.2021.3066405
  • Kokotovic, P., Krstic, M., & Kanellakopoulos, I. (1992). Backstepping to passivity: recursive design of adaptive systems. In 1992 Proceedings of the 31st IEEE Conference on Decision and Control (Vol. 4, pp. 3276–3280). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CDC.1992.371031
  • Li, Y., & Tong, S. (2024). Adaptive backstepping control for uncertain nonlinear strict-feedback systems with full state triggering. Automatica, 163, 111574. https://doi.org/10.1016/j.automatica.2024.111574
  • Lin, C. M., & Li, H. Y. (2014). Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Transactions on Fuzzy Systems, 22(4), 791–802. https://doi.org/10.1109/TFUZZ.2013.2272648
  • Liu, L., Li, Q., Lin, Z., & Fang, Y. (2023). Fixed-time prescribed performance optimization control for the speed and tension system of the cold strip rolling mill with output constraints. International Journal of Adaptive Control and Signal Processing, 37(7), 1628–1649. https://doi.org/10.1002/acs.3592
  • Martínez-García, M., Kalawsky, R. S., Gordon, T., Smith, T., Meng, Q., & Flemisch, F. (2021). Communication and interaction with semiautonomous ground vehicles by force control steering. IEEE Transactions on Cybernetics, 51(8), 3913–3924. https://doi.org/10.1109/TCYB.2020.3020217
  • Meena, G. D., & Janardhanan, S. (2020). Discretization of linear time-varying systems. In 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET) (pp. 1–6). nstitute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICEFEET49149.2020.9186982
  • Mortazavizadeh, S. A., Ghaderi, A., Ebrahimi, M., & Hajian, M. (2020). Recent developments in the vehicle steer-by-wire system. IEEE Transactions on Transportation Electrification, 6(3), 1226–1235. https://doi.org/10.1109/TTE.2020.3004694
  • Moutchou, M., Mahmoudi, H., & Abbou, A. (2014). A new technique of backstepping control parameters determination using genetic algorithm. In 2014 International Renewable and Sustainable Energy Conference (IRSEC) (pp. 475–480). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/IRSEC.2014.7059744
  • Perozzi, G., Rath, J. J., Sentouh, C., Floris, J., & Popieul, J. C. (2021). Lateral shared sliding mode control for lane-keeping assist system in steer-by-wire vehicles: Theory and experiments. IEEE Transactions on Intelligent Vehicles, 8, 3073–3082. https://doi.org/10.1109/TIV.2021.3097352
  • Sun, Z., Zheng, J., Man, Z., & Wang, H. (2016). Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Transactions on Industrial Electronics, 63(4), 2251–2262. https://doi.org/10.1109/TIE.2015.2499246
  • Tang, J., Liu, G., & Pan, Q. (2021). A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA Journal of Automatica Sinica, 8(10), 1627–1643. https://doi.org/10.1109/JAS.2021.1004129
  • Tong, S., & Li, Y. (2012). Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Transactions on Fuzzy Systems, 20(1), 168–180. https://doi.org/10.1109/TFUZZ.2011.2171189
  • Wang, Y., Liu, Y., & Wang, Y. (2023). Adaptive discrete-time NN controller design for automobile steer-by-wire systems with angular velocity observer. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(4), 722–736. https://doi.org/10.1177/09544070221083426
  • Wang, H., Man, Z., Kong, H., Zhao, Y., Yu, M., Cao, Z., Zheng, J., & Do, M. T. (2016). Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle. IEEE Transactions on Industrial Electronics, 63(9), 5774–5785. https://doi.org/10.1109/TIE.2016.2573239
  • Wang, H., Xu, K., & Zhang, H. (2023). Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties. IEEE Transactions on Automatic Control, 68(9), 5737–5744. https://doi.org/10.1109/TAC.2022.3226703
  • Xu, Z., Shi, Q., Wei, Y., Wang, M., He, Z., & He, L. (2021). A generalized predictive control approach for angle tracking of steer-by-wire system. In 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 272–275). Institute of Electrical and Electronics Engineers (IEEE).
  • Yin, Q., Zhang, H., Mu, Q., Yang, J., & Ma, Q. (2022). Multilayer-neural-network observer with compensator and command-filter-based adaptive backstepping tracking control of switched nonlinear systems. Journal of the Franklin Institute, 169, 2976–3000. https://doi.org/10.1016/j.jfranklin.2023.01.027
  • Yuan, X., Yang, B., & Zhao, X. (2024). Observer-based fuzzy adaptive tracking control of nonlinear strict-feedback systems via a unique event triggering approach. IEEE Transactions on Fuzzy Systems, 31(8), 2734–2746. https://doi.org/10.1109/TFUZZ.2023.3235431
  • Zhou, L., Liao, C., She, J., He, Y., & Li, H. (2023). Command-filtered backstepping repetitive control for a class of uncertain nonlinear systems based on additive state decomposition. IEEE Transactions on Industrial Electronics, 70(5), 5150–5160. https://doi.org/10.1109/TIE.2022.3186332

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.